Objective Bayesian inference for the reliability in a bivariate Lomax distribution

被引:0
|
作者
Kang, Sang Gil [1 ]
Lee, Woo Dong [2 ]
Kim, Yongku [3 ]
机构
[1] Sangji Univ, Dept Comp & Data Informat, Wonju 26339, South Korea
[2] Daegu Haany Univ, Div Self Design Convergence, Gyongsan 38610, South Korea
[3] Kyungpook Natl Univ, Dept Stat, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Bivariate Lomax distribution; Matching prior; Reference prior; Propriety; Reliability; FREQUENTIST; PARAMETER; PRIORS; MODEL;
D O I
10.1007/s42952-023-00223-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the objective Bayesian analysis for the reliability in the bivariate Lomax distribution. In this paper, we derive the first- and second-order matching priors and the reference priors for the reliability in the bivariate Lomax population. However, it turns out that the reference priors do not satisfy the first-order matching criterion and also, the matching priors and the reference priors have different distributions. We provide conditions for the general prior, including the matching and reference priors, to generate proper posterior distributions. Our simulation shows that the matching prior matches the target coverage probabilities well in a frequentist sense. Furthermore, even when the reference priors do not satisfy the first-order matching criterion, they still perform as well as the second-order matching prior. Finally, we demonstrate our results using two real examples.
引用
收藏
页码:816 / 837
页数:22
相关论文
共 50 条
  • [31] Application of objective priors for the multivariate Lomax distribution
    Kang, Sang Gil
    Lee, Woo Dong
    Kim, Yongku
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (07) : 2307 - 2328
  • [32] New Bivariate Copulas via Lomax Distribution Generated Distortions
    Aldhufairi, Fadal Abdullah Ali
    Sepanski, Jungsywan H.
    APPLIEDMATH, 2024, 4 (02): : 641 - 665
  • [33] BAYESIAN PARAMETER AND RELIABILITY ESTIMATION FOR A BIVARIATE EXPONENTIAL-DISTRIBUTION - PARALLEL SAMPLING
    SHAMSELDIN, AA
    PRESS, SJ
    JOURNAL OF ECONOMETRICS, 1984, 24 (03) : 363 - 378
  • [34] Bayesian and Non - Bayesian Inference for Shape Parameter and Reliability Function of Basic Gompertz Distribution
    Awad, Manahel Kh
    Rasheed, Huda A.
    BAGHDAD SCIENCE JOURNAL, 2020, 17 (03) : 854 - 860
  • [35] Objective Bayesian inference for the Capability index of the Weibull distribution and its generalization
    Ramos, Pedro L.
    Almeida, Marcello H.
    Louzada, Francisco
    Flores, Edilson
    Moala, Fernando A.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 167
  • [36] Bayesian and Non-Bayesian Inference to Bivariate Alpha Power Burr-XII Distribution with Engineering Application
    Ramadan, Dina A.
    Hasaballah, Mustafa M.
    Abd-Elwaha, Nada K.
    Alshangiti, Arwa M.
    Kamel, Mahmoud I.
    Balogun, Oluwafemi Samson
    El-Awady, Mahmoud M.
    AXIOMS, 2024, 13 (11)
  • [37] Bayesian inference for Marshall-Olkin bivariate Lomax-Geometric distribution under adaptive type-II progressive hybrid censored dependent competing risks data
    Zhang, Chunmei
    Zhang, Jiaxin
    Gui, Wenhao
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [38] Objective Bayesian analysis of Marshall-Olkin bivariate Weibull distribution with partial information
    Panwar, M. S.
    Barnwal, Vikas
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (15) : 5331 - 5352
  • [39] Inference of stress-strength model for a Lomax distribution
    Panahi, H.
    Asadi, S.
    World Academy of Science, Engineering and Technology, 2011, 55 : 275 - 278
  • [40] Bayesian inference for a flexible class of bivariate beta distributions
    Crackel, Roberto
    Flegal, James
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (02) : 295 - 312