Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities

被引:20
|
作者
de la Mata, Felix Fernandez [1 ]
Gijon, Alfonso [1 ]
Molina-Solana, Miguel [1 ,2 ]
Gomez-Romero, Juan [1 ]
机构
[1] Univ Granada, Dept Comp Sci & AI, Granada, Spain
[2] Imperial Coll London, Dept Comp, London, England
关键词
Deep learning; Physics-Informed Neural Networks; Learned simulators; Data-driven simulations;
D O I
10.1016/j.physa.2022.128415
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The last decade has seen a rise in the number and variety of techniques available for data-driven simulation of physical phenomena. One of the most promising approaches is Physics-Informed Neural Networks (PINNs), which can combine both data, obtained from sensors or numerical solvers, and physics knowledge, expressed as partial differential equations. In this work, we investigated the suitability of PINNs to replace current available numerical methods for physics simulations. Although the PINN approach is general and independent of the complexity of the underlying physics equations, a selection of typical heat transfer and fluid dynamics problems was proposed and multiple PINNs were comprehensibly trained and tested to solve them. When PINNs were used as learned simulators, the outcome of our experiments was not entirely satisfactory as not enough accuracy was achieved even though optimal configurations and long training times were used. The main cause for this limitation was found to be the lack of adequate activation functions and specialized architectures, since they proved to have a notable impact on the final accuracy of each model. In turn, PINN architectures showed an accurate behavior when used for parameter inference of partial differential equations from data.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Physics-informed neural networks in groundwater flow modeling: Advantages and future directions
    Ali, Ahmed Shakir Ali
    Jazaei, Farhad
    Clement, T. Prabhakar
    Waldron, Brian
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2024, 25
  • [32] MBD-NODE: physics-informed data-driven modeling and simulation of constrained multibody systems
    Wang, Jingquan
    Wang, Shu
    Unjhawala, Huzaifa Mustafa
    Wu, Jinlong
    Negrut, Dan
    MULTIBODY SYSTEM DYNAMICS, 2024,
  • [33] Separable Physics-Informed Neural Networks
    Cho, Junwoo
    Nam, Seungtae
    Yang, Hyunmo
    Yun, Seok-Bae
    Hong, Youngjoon
    Park, Eunbyung
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [34] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [35] A physics-informed data-driven approach for forecasting bifurcations in dynamical systems
    Perez, Jesus Garcia
    Sanches, Leonardo
    Ghadami, Amin
    Michon, Guilhem
    Epureanu, Bogdan I.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 11773 - 11789
  • [36] Regulating the development of accurate data-driven physics-informed deformation models
    Newman, Will
    Ghaboussi, Jamshid
    Insana, Michael
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [37] Physics-informed Data-driven Communication Performance Prediction for Underwater Vehicles
    Chitre, Mandar
    Li Kexin
    2022 SIXTH UNDERWATER COMMUNICATIONS AND NETWORKING CONFERENCE (UCOMMS), 2022,
  • [38] Physics-Informed Data-Driven Modeling for Engine Volumetric Efficiency Estimation
    Li, Qian
    Guo, Fan
    Song, Kang
    Xie, Hui
    Zhou, Shengkai
    Sang, Hailang
    IFAC PAPERSONLINE, 2024, 58 (29): : 403 - 408
  • [39] Physics-informed data-driven model for fluid flow in porous media
    Kazemi, Mohammad
    Takbiri-Borujeni, Ali
    Takbiri, Sam
    Kazemi, Arefeh
    COMPUTERS & FLUIDS, 2023, 264
  • [40] Randomized physics-informed neural networks for Bayesian data assimilation
    Zong, Yifei
    Barajas-Solano, David
    Tartakovsky, Alexandre M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436