CO2 capture, separation, and storage on MgSiP2 monolayer: A first-principles study

被引:9
|
作者
Yu, Jiahui [1 ,2 ,5 ]
He, Chaozheng [1 ,5 ]
Huo, Jinrong [1 ,6 ]
Zhao, Chenxu [1 ,3 ,4 ,5 ]
Yu, Lingmin [1 ,5 ]
机构
[1] Xian Technol Univ, Inst Environm & Energy Catalysis, Sch Mat Sci & Chem Engn, Xian 710021, Shaanxi, Peoples R China
[2] Nanyang Inst Technol, Sch Math & Phys, Singapore 473004, Singapore
[3] Jilin Univ, Minist Educ, Key Lab Automobile Mat, Changchun 130022, Jilin, Peoples R China
[4] Jilin Univ, Dept Mat Sci & Engn, Changchun 130022, Jilin, Peoples R China
[5] Xian Technol Univ, Sch Mat Sci & Chem Engn, Shaanxi Key Lab Optoelect Funct Mat & Devices, Xian 710021, Shaanxi, Peoples R China
[6] Xian Technol Univ, Sch Sci, Xian 710021, Shaanxi, Peoples R China
关键词
CO; 2; capture; Separate; Store; 2DMgSiP2; CARBON-DIOXIDE; ADSORPTION;
D O I
10.1016/j.vacuum.2022.111693
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
New materials that can effectively capture, separate, and store CO2 play a key role in suppressing the CO2 concentration in the atmosphere and alleviating the greenhouse effect. Herein, we report a study of the adsorption of gaseous CO2, N2, CH4, and H2 on a 2D MgSiP2 monolayer. The results demonstrate that MgSiP2 monolayer is able to selectively capture CO2 from CO2/H2 gas mixture. However, CO2 cannot be effectively captured from a mixture of CO2, N2, and CH4. Further research shows that the MgSiP2 monolayer can capture up to eight CO2 molecules with a maximum capture capacity of 20.42 wt%, indicating its good CO2 storage capacity. Moreover, compared with other studies, the 2D MgSiP2 surface that is not modified can release CO2 at relatively high temperatures. This work focuses on providing important information about a multifunctional 2D material, which is an indispensable support for the practical application of the 2D MgSiP2 structure.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Imaging Catalytic Activation of CO2 on Cu2O (110): A First-Principles Study
    Li, Liang
    Zhang, Rui
    Vinson, John
    Shirley, Eric L.
    Greeley, Jeffrey P.
    Guest, Jeffrey R.
    Chan, Maria K. Y.
    CHEMISTRY OF MATERIALS, 2018, 30 (06) : 1912 - 1923
  • [32] First-principles study adsorption properties of CO2 molecule on CaO(100) surfaces
    Li, Xiaodong
    An, Meimei
    Zhu, Yuancheng
    Ma, Haiyan
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2015), 2015, 33 : 267 - 270
  • [33] CO2 Reduction Mechanism on the Cu2O(110) Surface: A First-Principles Study
    Chen, Haihang
    Fan, Ting
    Ji, Yongfei
    CHEMPHYSCHEM, 2023, 24 (11)
  • [34] First-principles study of hydrogen storage application of Ti3C2Tx monolayer MXene
    Chu, Yi Zhi
    Lau, Kah Chun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 57 : 1144 - 1151
  • [35] Mo3(C6O6)2 monolayer as a promising electrocatalyst for the CO2 reduction reaction: a first-principles study
    Geng, Weixiang
    Li, Tianchun
    Zhu, Xiaorong
    Jing, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (41) : 25639 - 25647
  • [36] Perspectives on CO2 capture and storage
    Johnsson, Filip
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2011, 1 (02): : 119 - 133
  • [37] Hydrogenation conversion of CO2 molecules on monolayer MoS2 supported (TiO2)n clusters: A first-principles investigation
    Shang, Cui
    Zhao, Bin
    Wang, Jianjun
    Li, Tao
    Liu, Dewei
    Zhang, Ming
    Chen, Zhiquan
    Jiang, Man
    MOLECULAR CATALYSIS, 2023, 550
  • [38] The cost of CO2 capture and storage
    Rubin, Edward S.
    Davison, John E.
    Herzog, Howard J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 40 : 378 - 400
  • [39] The Interface between Gd and Monolayer MoS2: A First-Principles Study
    Xuejing Zhang
    Wenbo Mi
    Xiaocha Wang
    Yingchun Cheng
    Udo Schwingenschlögl
    Scientific Reports, 4
  • [40] Prospects for CO2 capture and storage
    Energy World, 2005, (327): : 14 - 16