TongueMendous: IR-Based Tongue-Gesture Interface with Tiny Machine Learning

被引:1
|
作者
Wong, Davy P. Y. [1 ]
Chou, Pai H. [1 ]
机构
[1] Natl Tsing Hua Univ, Hsinchu, Taiwan
关键词
tongue-gesture interface; ubiquitous computing; TinyML;
D O I
10.1145/3615834.3615843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents TongueMendous, an non-intrusive, pervasive tongue-gesture recognition interface for the general population and use cases. It uses an infrared sensor to detect tongue gestures when the tongue sticks in different directions. The collected data is recognized by a tiny machine learning (TinyML) model, allowing TongueMendous to classify tongue gestures on a microcontroller. Evaluations on the initial prototype reported a 91.7% cross-validation accuracy and 89.4% leave-one-person-out accuracy. We also conduct a study to explore the user experience and future design space. These results suggest that the proposed system can be accurate and work well across different users.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Deep Learning Approach for a Machine-Human interface based on optical real-time Gesture Recognition for Automated Guided Vehicles
    Krishnakumar, Kiran Raj
    Gersmeier, Laura
    Harders, Leif Ole
    Hussmann, Stephan
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
  • [42] Machine Learning Method-Based Static Infrared Gesture Recognition System
    Duan, Jialin
    Chen, Koulan
    Xie, Yun
    Cai, Chunhua
    IEEE SENSORS LETTERS, 2023, 7 (12) : 1 - 4
  • [43] MEMS based eating and drinking gesture spotting using machine learning techniques
    Subramani, Sivakannan
    Sathish, Paavana
    Subramani, Pushpalatha
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2023, 26 (01) : 133 - 145
  • [44] Greeting Gesture Classification Using Machine Learning Based on Politeness Perspective in Japan
    Wibowo, Angga Wahyu
    Kurnianingsih
    Saputra, Azhar Aulia
    Sato-Shimokawara, Eri
    Takama, Yasufumi
    Kubota, Naoyuki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (02) : 255 - 264
  • [45] Glossokinetic potential based tongue-machine interface for 1-D extraction
    Gorur, Kutlucan
    Bozkurt, M. Recep
    Bascil, M. Serdar
    Temurtas, Feyzullah
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2018, 41 (02) : 379 - 391
  • [46] On-Device Tiny Machine Learning for Anomaly Detection Based on the Extreme Values Theory
    Pereira, Eduardo S.
    Marcondes, Leonardo S.
    Silva, Josemar M.
    IEEE MICRO, 2023, 43 (06) : 58 - 65
  • [47] A Gesture Database of B-mode Ultrasound-based Human-machine Interface
    Xia, Wei
    Ye, Lin-Wei
    Liu, Hong-Hai
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2017, : 118 - 122
  • [48] Hand-Gesture-based Human-Machine Interface System using Compressive Sensing
    Mantecon, Tomas
    Mantecon, Ana
    del-Blanco, Carlos R.
    Jaureguizar, Fernando
    Garcia, Narciso
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE), 2015,
  • [49] Capacitive-Based Gesture Recognition System for Human-Machine Interface in Automotive Applications
    Ferro, E.
    Gonzalez, J. A.
    Segovia, M.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [50] BLE-based Indoor Positioning Platform Utilizing Edge Tiny Machine Learning
    Avellenada, Diego
    Mendez, Diego
    Fortino, Giancarlo
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 84 - 91