TongueMendous: IR-Based Tongue-Gesture Interface with Tiny Machine Learning

被引:1
|
作者
Wong, Davy P. Y. [1 ]
Chou, Pai H. [1 ]
机构
[1] Natl Tsing Hua Univ, Hsinchu, Taiwan
关键词
tongue-gesture interface; ubiquitous computing; TinyML;
D O I
10.1145/3615834.3615843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents TongueMendous, an non-intrusive, pervasive tongue-gesture recognition interface for the general population and use cases. It uses an infrared sensor to detect tongue gestures when the tongue sticks in different directions. The collected data is recognized by a tiny machine learning (TinyML) model, allowing TongueMendous to classify tongue gestures on a microcontroller. Evaluations on the initial prototype reported a 91.7% cross-validation accuracy and 89.4% leave-one-person-out accuracy. We also conduct a study to explore the user experience and future design space. These results suggest that the proposed system can be accurate and work well across different users.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The electronic mechanism of the γ/γ′ interface strength of Ir-based alloys
    Chen, K
    Zhao, LR
    Tse, JS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (43) : 10041 - 10049
  • [2] Deep Learning-Based Hand Gesture Recognition System and Design of a Human–Machine Interface
    Abir Sen
    Tapas Kumar Mishra
    Ratnakar Dash
    Neural Processing Letters, 2023, 55 : 12569 - 12596
  • [3] An Empirical Study of IR-based Bug Localization for Deep Learning-based Software
    Kim, Misoo
    Kim, Youngkyoung
    Lee, Eunseok
    2022 IEEE 15TH INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION (ICST 2022), 2022, : 128 - 139
  • [4] Deep Learning-Based Hand Gesture Recognition System and Design of a Human-Machine Interface
    Sen, Abir
    Mishra, Tapas Kumar
    Dash, Ratnakar
    NEURAL PROCESSING LETTERS, 2023, 55 (09) : 12569 - 12596
  • [5] EMG based Gesture Recognition using Machine Learning
    Anil, Nikitha
    Sreeletha, S. H.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1560 - 1564
  • [6] Tongue-Rudder: A Glossokinetic-Potential-Based Tongue-Machine Interface
    Nam, Yunjun
    Zhao, Qibin
    Cichocki, Andrzej
    Choi, Seungjin
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (01) : 290 - 299
  • [7] Gesture ToolBox: Touchless Human-Machine Interface Using Deep Learning
    Lesnes-Cuisiniez, Elann
    Flores, Jesus Zegarra
    Radoux, Jean-Pierre
    KI 2017: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, 10505 : 323 - 329
  • [8] Tongue movement human machine interface based on chin SEMG
    Chou, Chih-Hong
    Hwang, Yuh-Shyan
    Chen, Chih-Chen
    Luo, Jyun-Yuan
    Chen, Shih-Ching
    Hong, Sheng-Wen
    Shih, Ying-Ying
    Chen, Yu-Luen
    ISBE 2011: 2011 INTERNATIONAL CONFERENCE ON BIOMEDICINE AND ENGINEERING, VOL 3, 2011, : 278 - 281
  • [9] A human-machine interface based on tongue and jaw movements
    Zeilfelder, Jennifer
    Busch, Tobias
    Zimmermann, Christoph
    Stork, Wilhelm
    2018 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2018, : 220 - 225
  • [10] A pilot study on a novel gesture-based tongue interface for robot and computer control
    Mohammadi, Mostafa
    Knoche, Hendrik
    Bentsen, Bo
    Gaihede, Michael
    Struijk, Lotte N. S. Andreasen
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 906 - 913