Dynamical Behaviour, Control, and Boundedness of a Fractional-Order Chaotic System

被引:6
|
作者
Ren, Lei [1 ]
Muhsen, Sami [2 ]
Shateyi, Stanford [3 ]
Saberi-Nik, Hassan [4 ]
机构
[1] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Peoples R China
[2] Al Mustaqbal Univ, Coll Engn & Technol, Air Conditioning & Refrigerat Tech Engn Dept, Babylon 51001, Iraq
[3] Univ Venda, Dept Math, Private Bag X5050, ZA-0950 Thohoyandou, South Africa
[4] Univ Neyshabur, Dept Math & Stat, Neyshabur 9319774446, Iran
关键词
fractional-order hyperchaotic system; global Mittag-Leffler attractive sets (MLASs); Mittag-Leffler positive invariant sets (MLPISs); chaos control; ULTIMATE BOUND SETS; LORENZ; SYNCHRONIZATION;
D O I
10.3390/fractalfract7070492
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the fractional-order chaotic system form of a four-dimensional system with cross-product nonlinearities is introduced. The stability of the equilibrium points of the system and then the feedback control design to achieve this goal have been analyzed. Furthermore, further dynamical behaviors including, phase portraits, bifurcation diagrams, and the largest Lyapunov exponent are presented. Finally, the global Mittag-Leffler attractive sets (MLASs) and Mittag-Leffler positive invariant sets (MLPISs) of the considered fractional order system are presented. Numerical simulations are provided to show the effectiveness of the results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Fractional-order chaotic system with hyperbolic function
    Gugapriya, G.
    Duraisamy, Prakash
    Karthikeyan, Anitha
    Lakshmi, B.
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (08)
  • [42] Synchronization in a unified fractional-order chaotic system
    Wu Zheng-Mao
    Xie Jian-Ying
    CHINESE PHYSICS, 2007, 16 (07): : 1901 - 1907
  • [43] Synchronization Of Liu Chaotic System With Fractional-Order
    Huang, Suhai
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 467 - 470
  • [44] Control of a fractional chaotic system based on a fractional-order resistor-capacitor filter
    张路
    邓科
    罗懋康
    Chinese Physics B, 2012, (09) : 133 - 141
  • [45] Control of a fractional chaotic system based on a fractional-order resistor-capacitor filter
    Zhang Lu
    Deng Ke
    Luo Mao-Kang
    CHINESE PHYSICS B, 2012, 21 (09)
  • [46] Fractional-order memristor-based chaotic jerk system with no equilibrium point and its fractional-order backstepping control
    Prakash, Pankaj
    Singh, Jay Prakash
    Roy, B. K.
    IFAC PAPERSONLINE, 2018, 51 (01): : 1 - 6
  • [47] Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems
    Jian, Jigui
    Wu, Kai
    Wang, Baoxian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [48] Dynamical Analysis and Adaptive Finite-Time Sliding Mode Control Approach of the Financial Fractional-Order Chaotic System
    Johansyah, Muhamad Deni
    Sambas, Aceng
    Mobayen, Saleh
    Vaseghi, Behrouz
    Al-Azzawi, Saad Fawzi
    Sulaiman, Ibrahim Mohammed
    MATHEMATICS, 2023, 11 (01)
  • [49] Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model
    Matouk, A. E.
    Elsadany, A. A.
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1597 - 1612
  • [50] Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system
    Yuhong Tang
    Min Xiao
    Guoping Jiang
    Jinxing Lin
    Jinde Cao
    Wei Xing Zheng
    Nonlinear Dynamics, 2017, 90 : 2185 - 2198