Prediction of Landslide Dam Formation Using Machine Learning Techniques

被引:0
|
作者
Xiao, Shihao [1 ]
Zhang, Limin [1 ,2 ,3 ]
Xiao, Te [1 ]
Jiang, Ruochen [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[2] HKUST Shenzhen Res Inst, Shenzhen, Peoples R China
[3] HKUST Shenzhen Hong Kong Collaborat Innovat Res I, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
JINSHA RIVER; LAKE;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Predicting landslide dam formation is essential in mitigating landslide risks in alpine valley regions. This study assesses the landslide damming probability with the consideration of landslide characteristics, valley topography, and hydrological factors using machine learning techniques. A landslide inventory is collected, including both damming landslides and non-damming landslides in the 2008 Wenchuan earthquake region and the Bailong River basin. Three machine learning algorithms are compared, including logistic regression, random forest, and support vector machine. Results show that machine learning techniques can well predict the landslide damming probability. The random forest model achieves the best prediction performance, followed by logistic regression and support vector machine. Among six learning features, landslide area, upstream watershed area, and valley floor width are the three most important variables for landslide dam formation. An illustration example of the Tangjiashan landslide dam is used to demonstrate how the developed model can be integrated to predict landslide dam formation.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 50 条
  • [31] Earthquake Prediction using Hybrid Machine Learning Techniques
    Salam, Mustafa Abdul
    Ibrahim, Lobna
    Abdelminaam, Diaa Salama
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (05) : 654 - 665
  • [32] Chip Performance Prediction Using Machine Learning Techniques
    Su, Min-Yan
    Lin, Wei-Chen
    Kuo, Yen-Ting
    Li, Chien-Mo
    Fang, Eric Jia-Wei
    Hsueh, Sung S-Y
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [33] Prediction of Movies popularity Using Machine Learning Techniques
    Latif, Muhammad Hassan
    Afzal, Hammad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (08): : 127 - 131
  • [34] Crop yield prediction using machine learning techniques
    Iniyan, S.
    Varma, V. Akhil
    Naidu, Ch Teja
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 175
  • [35] Prediction of Geotechnical Parameters Using Machine Learning Techniques
    Puri, Nitish
    Prasad, Harsh Deep
    Jain, Ashwani
    6TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS, 2018, 125 : 509 - 517
  • [36] Car Price Prediction using Machine Learning Techniques
    Gegic, Enis
    Isakovic, Becir
    Keco, Dino
    Masetic, Zerina
    Kevric, Jasmin
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2019, 8 (01): : 113 - 118
  • [37] Heart Disease Prediction Using Machine Learning Techniques
    Sadar, Uzama
    Agarwal, Parul
    Parveen, Suraiya
    Jain, Sapna
    Obaid, Ahmed J.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 551 - 560
  • [38] Heart Disease Prediction Using Machine Learning Techniques
    Guruprasad, Sunitha
    Mathias, Valesh Levin
    Dcunha, Winslet
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 762 - 766
  • [39] Cybercrime: Identification and Prediction Using Machine Learning Techniques
    Veena, K.
    Meena, K.
    Kuppusamy, Ramya
    Teekaraman, Yuvaraja
    Angadi, Ravi V.
    Thelkar, Amruth Ramesh
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [40] Prediction of Phone Prices Using Machine Learning Techniques
    Subhiksha, S.
    Thota, Swathi
    Sangeetha, J.
    DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT-2K19, 2020, 1079 : 781 - 789