Decay estimates for Schrodinger systems with time-dependent potentials in 2D

被引:0
|
作者
Tang, Shuqi [1 ]
Li, Chunhua [1 ]
机构
[1] Yanbian Univ, Coll Sci, Dept Math, Yanji 133002, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 08期
关键词
systems of nonlinear Schro & BULL; dinger equations; time-dependent potentials; time decay estimates; mass resonances; NONLINEAR SCHRODINGER; SCATTERING PROBLEM; EQUATIONS; ASYMPTOTICS; BEHAVIOR; SPACES;
D O I
10.3934/math.20231002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for systems of nonlinear Schrodinger equations with time-dependent potentials in 2D. Under assumptions about mass resonances and potentials, we prove the global existence of the nonlinear Schrodinger systems with small initial data. In particular, by analyzing the operator ? and time-dependent potentials V-j separately, we show that the small global solutions satisfy time decay estimates of order O((t log t)(-1)) when p = 2, and the small global solutions satisfy time decay estimates of order O(t(-1)) when p > 2.
引用
收藏
页码:19656 / 19676
页数:21
相关论文
共 50 条
  • [31] Numerical time-dependent solutions of the Schrodinger equation with piecewise continuous potentials
    van Dijk, Wytse
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [32] Efficient multiscale methods for the semiclassical Schrodinger equation with time-dependent potentials
    Chen, Jingrun
    Li, Sijing
    Zhang, Zhiwen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 369
  • [33] Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials
    Chin, SA
    Chen, CR
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (04): : 1409 - 1415
  • [34] Numerical solutions of the Schrodinger equation with source terms or time-dependent potentials
    van Dijk, W.
    Toyama, F. M.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [36] Decay rate estimates for a new class of multidimensional nonlinear Bresse systems with time-dependent dissipations
    Hanni Dridi
    Ricerche di Matematica, 2023, 72 : 565 - 597
  • [37] Visualization of Parameter Sensitivity of 2D Time-Dependent Flow
    Hanser, Karsten
    Kleine, Ole
    Rieck, Bastian
    Wiebe, Bettina
    Selz, Tobias
    Piatkowski, Marian
    Sagrista, Antoni
    Zheng, Boyan
    Lukacova-Medvidova, Maria
    Craig, George
    Leitte, Heike
    Sadlo, Filip
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 359 - 370
  • [38] Decay estimates for the time-fractional evolution equations with time-dependent coefficients
    Smadiyeva, Asselya G.
    Torebek, Berikbol T.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2276):
  • [39] Time decay for solutions of Schrödinger equations with rough and time-dependent potentials
    Igor Rodnianski
    Wilhelm Schlag
    Inventiones mathematicae, 2004, 155 : 451 - 513