Painleve-Gullstrand coordinates for Schwarzschild-de Sitter spacetime

被引:3
|
作者
Volovik, G. E. [1 ]
机构
[1] Aalto Univ, Sch Sci & Technol, Low Temp Lab, POB 15100, FI-00076 Aalto, Finland
基金
欧洲研究理事会;
关键词
Black hole; White hole; Event horizon; de Sitter; BLACK-HOLE; RELATIVITY; MECHANICS; SYSTEMS;
D O I
10.1016/j.aop.2023.169219
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Painleve-Gullstrand coordinates are extended to describe the black hole in the cosmological environment: the Schwarzschild- de Sitter black hole, which has two horizons. The extension is made using the Arnowitt-Deser-Misner formalism. In this extension, which describes the metric in the whole range of radial coordinates 0 < r < infinity, there is the point r = r0 at which the shift function (velocity) changes sign. At this point the observer is at rest, while the observers at r < r0 are free falling to the black hole and the observers at r > r0 are free falling towards the cosmological horizon. The existence of the stationary observer allows to determine the temperature of Hawking radiation, which is in agreement with Bousso and Hawking (1996). It is the red-shifted modification of the con-ventional Hawking temperature determined by the gravity at the horizon. We also consider the Painleve-Gullstrand coordinates and their extension for such configurations as Schwarzschild- de Sitter white hole, where the sign of the shift function is everywhere positive; the black hole in the environment of the contracting de Sitter spacetime, where the sign of the shift function is everywhere negative; and the white hole in the contracting de Sitter spacetime, where the shift velocity changes sign at r = r0.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Numerical solution of the Dirac equation in Schwarzschild-de Sitter spacetime
    Lyu, Y.
    Gui, Y. X.
    PHYSICA SCRIPTA, 2007, 75 (02) : 152 - 156
  • [32] Static sphere observers and geodesics in Schwarzschild-de Sitter spacetime
    Faruk, Mir Mehedi
    Morvan, Edward
    van der Schaar, Jan Pieter
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05):
  • [33] Gravitational deflection of massive particles in Schwarzschild-de Sitter spacetime
    He, Guansheng
    Zhou, Xia
    Feng, Zhongwen
    Mu, Xueling
    Wang, Hui
    Li, Weijun
    Pan, Chaohong
    Lin, Wenbin
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (09):
  • [34] Hidden conformal symmetry and entropy of Schwarzschild-de Sitter spacetime
    Guerrero-Dominguez, D.
    Talavera, P.
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [35] GEMS Embeddings of Schwarzschild and RN Black Holes in Painleve-Gullstrand Spacetimes
    Hong, Soon-Tae
    Kim, Yong-Wan
    Park, Young-Jai
    UNIVERSE, 2022, 8 (01)
  • [36] Schwarzschild-de Sitter spacetimes, McVittie coordinates, and trumpet geometries
    Dennison, Kenneth A.
    Baumgarte, Thomas W.
    PHYSICAL REVIEW D, 2017, 96 (12)
  • [37] Gravitational collapse of K-essence matter in Painleve-Gullstrand coordinates
    Leonard, C. Danielle
    Ziprick, Jonathan
    Kunstatter, Gabor
    Mann, Robert B.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (10):
  • [38] THE FORCE OF GRAVITY IN SCHWARZSCHILD AND GULLSTRAND-PAINLEVE COORDINATES
    Brannen, Carl
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (14): : 2289 - 2294
  • [39] On the meaning of Painleve-Gullstrand synchronization
    Jaen, Xavier
    Molina, Alfred
    GENERAL RELATIVITY AND GRAVITATION, 2015, 47 (12) : 1 - 16
  • [40] Maximal extension of the Schwarzschild metric: From Painleve-Gullstrand to Kruskal-Szekeres
    Lemos, Jose P. S.
    Silva, Diogo L. F. G.
    ANNALS OF PHYSICS, 2021, 430