A Surrogate-Assisted Expensive Constrained Multi-Objective Optimization Algorithm Based on Adaptive Switching of Acquisition Functions

被引:3
|
作者
Wu, Haofeng [1 ]
Chen, Qingda [1 ]
Jin, Yaochu [1 ,2 ]
Ding, Jinliang [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[2] Westlake Univ, Sch Engn, Hangzhou 310030, Peoples R China
关键词
Optimization; Iron; Evolutionary computation; Computational modeling; Statistics; Sociology; Prediction algorithms; Evolutionary optimization; surrogate models; acquisition function; expensive constrained multi-objective optimization; NONDOMINATED SORTING APPROACH; EVOLUTIONARY ALGORITHM; FRAMEWORK;
D O I
10.1109/TETCI.2024.3359517
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Expensive constrained multi-objective optimization problems (ECMOPs) present a significant challenge to surrogate-assisted evolutionary algorithms (SAEAs) in effectively balancing optimization of the objectives and satisfaction of the constraints with complex landscapes, leading to low feasibility, poor convergence and insufficient diversity. To address these issues, we design a novel algorithm for the automatic selection of two acquisition functions, thereby taking advantage of the benefits of both using and ignoring constraints. Specifically, a multi-objective acquisition function that ignores constraints is proposed to search for problems whose unconstrained Pareto-optimal front (UPF) and constrained Pareto-optimal front (CPF) are similar. In addition, another constrained multi-objective acquisition function is introduced to search for problems whose CPF is far from the UPF. Following the optimization of the two acquisition functions, two model management strategies are proposed to select promising solutions for sampling new solutions and updating the surrogates. Any multi-objective evolutionary algorithm (MOEA) for solving non-constrained and constrained multiobjective optimization problems can be integrated into our algorithm. The performance of the proposed algorithm is evaluated on five suites of test problems, one benchmark-suite of real-world constrained multi-objective optimization problems (RWCMOPs) and a real-world optimization problem. Comparative results show that the proposed algorithm is competitive against state-of-the-art constrained SAEAs.
引用
收藏
页码:2050 / 2064
页数:15
相关论文
共 50 条
  • [21] A Surrogate-Assisted Offspring Generation Method for Expensive Multi-objective Optimization Problems
    Li, Fan
    Gao, Liang
    Shen, Weiming
    Cai, Xiwen
    Huang, Shifeng
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [22] A Surrogate-assisted Memetic Algorithm for Interval Multi-objective Optimization
    Sun, Jing
    Miao, Zhuang
    Gong, Dunwei
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [23] An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization
    Wang, Xilu
    Jin, Yaochu
    Schmitt, Sebastian
    Olhofer, Markus
    INFORMATION SCIENCES, 2020, 519 : 317 - 331
  • [24] Regularity model based offspring generation in surrogate-assisted evolutionary algorithms for expensive multi-objective optimization
    Li, Bingdong
    Lu, Yongfan
    Qian, Hong
    Hong, Wenjing
    Yang, Peng
    Zhou, Aimin
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [25] Surrogate-assisted operator-repeated evolutionary algorithm for computationally expensive multi-objective problems
    Cai, Xiwen
    Zou, Tao
    Gao, Liang
    APPLIED SOFT COMPUTING, 2023, 147
  • [26] Investigating the performance of a surrogate-assisted nutcracker optimization algorithm on multi-objective optimization problems
    Evangeline, S. Ida
    Darwin, S.
    Anandkumar, P. Peter
    Sreenivasan, V. S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [27] A Surrogate-Assisted Partial Optimization for Expensive Constrained Optimization Problems
    Nishihara, Kei
    Nakata, Masaya
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT II, PPSN 2024, 2024, 15149 : 391 - 407
  • [28] A Novel Surrogate-Assisted Multi-Objective Optimization Algorithm for an Electromagnetic Machine Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    Yeo, Han-Kyeol
    Jung, Sang-Yong
    Ro, Jong-Suk
    Jung, Hyun-Kyo
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (03)
  • [29] RM-SAEA: Regularity Model Based Surrogate-Assisted Evolutionary Algorithms for Expensive Multi-Objective Optimization
    Lu, Yongfan
    Li, Bingdong
    Qian, Hong
    Hong, Wenjing
    Yang, Peng
    Zhou, Aimin
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 722 - 730
  • [30] A New Robust Surrogate-Assisted Multi-Objective Optimization Algorithm for an IPMSM Design
    Lim, Dong-Kuk
    Woo, Dong-Kyun
    Yeo, Han-Kyeol
    Jung, Sang-Yong
    Jung, Hyun-Kyo
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,