Zero thermal expansion, high specific thermal conductivity, and good machinability of Cu2P2O7/2024Al composite

被引:8
|
作者
Xie, Lulu [1 ,2 ]
Lin, Jianchao [1 ]
Zhong, Xiaokang [1 ]
Dong, Buke [1 ,2 ]
Wang, Rui [3 ]
Zhu, Xiaoguang [1 ]
Tong, Peng [1 ,2 ]
Song, Wenhai [1 ]
Sun, Yuping [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, HFIPS, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Anhui Agr Univ, Text Engn & Acad Art, Hefei 230036, Peoples R China
[4] Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme C, High Magnet Field Lab, HFIPS, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
Composites; Interfaces; Thermal conductivity; Thermal expansion; DIMENSIONAL STABILITY; ELASTIC PROPERTIES; HEAT-TREATMENT; MATRIX; BEHAVIOR; SI; STRESSES; OXIDE;
D O I
10.1016/j.ceramint.2023.08.240
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Negative thermal expansion (NTE) materials can be applied to suppress thermal expansion of other materials, forming composites with zero thermal expansion (ZTE). However, the shortcomings (e.g., high density, narrow working temperature window) inherited from various NTE materials hinder the applications of corresponding ZTE composites. The modified Cu2P2O7 by reducing oxygen deficiencies has a relatively low density and strong NTE over a wide temperature range, which therefore was used to composite with 2024Al. When the volume content of modified Cu2P2O7 is about 50%, the composite Cu2P2O7/2024Al shows ZTE effect, and the linear coefficient of thermal expansion is about -0.014 ppm/K at 273-333 K. The ZTE composite also exhibits a high specific thermal conductivity, significantly superior to other existing ZTE materials. Furthermore, due to the matched moduli between Cu2P2O7 and 2024Al, the ZTE composite displays good machinability. The current ZTE composite may have great potential applications in the fields of high-precision electronics and optics.
引用
收藏
页码:35617 / 35622
页数:6
相关论文
共 50 条
  • [31] Negative thermal expansion and electrical properties of α-Cu2V2O7
    Zhang, Niu
    Li, Li
    Wu, Mingyi
    Li, Yuxiang
    Feng, Dongsheng
    Liu, Cunyuan
    Mao, Yanchao
    Guo, Juan
    Chao, Mingju
    Liang, Erjun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (11) : 2761 - 2766
  • [32] Preparation and Properties of ZrW2O8/ZrO2(Al2O3) Composite with Near Zero Thermal Expansion
    Yan Xuehua
    Yang Xinbo
    Cheng Xiaonong
    RARE METAL MATERIALS AND ENGINEERING, 2008, 37 : 615 - 618
  • [33] Fabrication of Zr2WP2O12/ZrV0.6P1.4O7 composite with a nearly zero-thermal-expansion property
    Yanase, Ikuo
    Sakai, Hiroshi
    Kobayashi, Hidehiko
    MATERIALS LETTERS, 2017, 207 : 221 - 224
  • [34] High strength Al2O3p/2024Al composites -: effect of particles, subgrains and precipitates
    Luan, BF
    Wu, GH
    Liu, W
    Hansen, N
    Lei, TQ
    MATERIALS SCIENCE AND TECHNOLOGY, 2005, 21 (12) : 1440 - 1443
  • [35] Influence of Alumina Content and Thermal Treatment on the Thermal Conductivity of UPE/Al2O3 Composite
    Wu, Xinfeng
    Jiang, Pingkai
    Zhou, Yun
    Yu, Jinhong
    Zhang, Fuhua
    Dong, Lihua
    Yin, Yansheng
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (15)
  • [36] Thermal conductivity of partially substituted YBa2Cu3O7-δ
    Williams, RK
    Martin, PM
    Scarbrough, JO
    PHYSICAL REVIEW B, 1999, 59 (21): : 13639 - 13641
  • [37] Theory of thermal conductivity in YBa2Cu3O7-delta
    Hirschfeld, PJ
    Putikka, WO
    PHYSICAL REVIEW LETTERS, 1996, 77 (18) : 3909 - 3912
  • [38] THERMAL-EXPANSION AND SYMMETRY OF YBA2CU3O7
    DERNBACH, D
    EHSES, KH
    JOURNAL OF THE LESS-COMMON METALS, 1990, 164 (164-5): : 146 - 151
  • [39] Effect of the atmosphere on the thermal expansion of YBa2Cu3O7-δ
    Julsrud, Stein
    Helgesen, Trude
    Rian, Gjertrud
    Fossheim, Kristian
    Laegreid, Trygve
    Sandvold, Erik
    Physica C: Superconductivity and its Applications, 1988, 153-55 (01): : 828 - 829
  • [40] Thermal expansion anomalies in REBa(2)Cu(3)O(7-delta)
    Divis, M
    Hejtmanek, J
    Kamarad, J
    Nekvasil, V
    PHYSICA B-CONDENSED MATTER, 1996, 223-24 (1-4) : 571 - 573