On the averaging principle for stochastic differential equations driven by G-Levy process

被引:0
|
作者
Yuan, Mingxia [1 ]
Wang, Bingjun [2 ]
Yang, Zhiyan [3 ]
机构
[1] Nanjing Vocat Inst Transport Technol, Nanjing 211188, Peoples R China
[2] Jinling Inst Technol, Nanjing 211169, Peoples R China
[3] Nanjing Inst Technol, Nanjing 211167, Peoples R China
基金
中国国家自然科学基金;
关键词
G-L?vy process; Averaging principle; Non-Lipschitz; Stochastic differential equation; STRONG-CONVERGENCE; SYSTEMS;
D O I
10.1016/j.spl.2023.109789
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we investigate the averaging principle for stochastic differential equation driven by G-Levy process. By the BDG inequality for G-stochastic calculus with respect to G-Levy process, we show that the solution of averaged stochastic differential equation driven by G-Levy process converges to that of the standard one, under non-Lipschitz condition, in the mean square sense and also in capacity. An example is presented to illustrate the efficiency of the obtained results.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Anticipating linear stochastic differential equations driven by a Levy process
    Leon, Jorge A.
    Marquez-Carreras, David
    Vives, Josep
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 26
  • [22] REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY A LEVY PROCESS
    Ren, Yong
    Fan, Xeliang
    ANZIAM JOURNAL, 2009, 50 (04): : 486 - 500
  • [23] Stochastic Averaging Principle for Mixed Stochastic Differential Equations
    Jing Yuanyuan
    Peng Yarong
    Li Zhi
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 35 (03): : 223 - 239
  • [24] Averaging Principle for Backward Stochastic Differential Equations
    Jing, Yuanyuan
    Li, Zhi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [25] Averaging principle for fuzzy stochastic differential equations
    Arhrrabi, Elhoussain
    Elomari, M'hamed
    Melliani, Said
    CONTRIBUTIONS TO MATHEMATICS, 2022, 5 : 25 - 29
  • [26] An Averaging Principle for Multivalued Stochastic Differential Equations
    Xu, Jie
    Liu, Jicheng
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2014, 32 (06) : 962 - 974
  • [27] An Averaging Principle for Stochastic Fractional Differential Equations Driven by fBm Involving Impulses
    Liu, Jiankang
    Wei, Wei
    Xu, Wei
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [28] Reflected backward doubly stochastic differential equations driven by a Levy process
    Ren, Yong
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (7-8) : 439 - 444
  • [29] Stochastic averaging principle for distribution dependent stochastic differential equations
    Shen, Guangjun
    Song, Jie
    Wu, Jiang-Lun
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [30] The Averaging Principle for Hilfer Fractional Stochastic Evolution Equations with Levy Noise
    Yang, Min
    Lv, Ting
    Wang, Qiru
    FRACTAL AND FRACTIONAL, 2023, 7 (10)