On a fractional (p,q)-Laplacian equation with critical nonlinearities

被引:0
|
作者
Shen, Yansheng [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang, Peoples R China
关键词
Fractional; (p; q)-Laplacian; critical nonlinearities; variational techniques; Q-LAPLACIAN PROBLEM; POSITIVE SOLUTIONS; MULTIPLICITY; (P; SYSTEMS; CONCAVE; EXISTENCE;
D O I
10.1080/17476933.2024.2332312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following fractional (p, q)-Laplacian equations with critical Hardy-Sobolev exponents {(-Delta)(p)(s)(1)u + (-Delta)(q)(s)(2)u = lambda|u|(r-2) + mu |u|(p)(s1)*(alpha)-2 u/|x|(alpha) in Omega, u = 0 in R-N\Omega, 0 < s(2) < s(1) < 1 < q < r <= p <N/s(1), lambda, mu > 0 are two parameters, 0 <= alpha < ps(1) and p(s1)* (alpha) = p(N-alpha)/N-ps(1) is the fractional Hardy-Sobolev critical exponent, Omega subset of R-N is an open bounded domain with smooth boundary. By using variational methods, we show that the problem has a nontrivial nonnegative weak solution.
引用
收藏
页数:21
相关论文
共 50 条