Learning Pair-Centric Representation for Link Sign Prediction with Subgraph

被引:0
|
作者
Chen, Jushuo [1 ,2 ]
Dai, Feifei [1 ]
Gu, Xiaoyan [1 ,2 ]
Fan, Haihui [1 ]
Zhou, Jiang [1 ]
Li, Bo [1 ]
Wang, Weiping [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
关键词
link sign prediction; signed graph; graph neural networks; graph representation learning; EMBEDDINGS; NODE;
D O I
10.1145/3583780.3614951
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Signed graphs are prevalent data structures containing both positive and negative links. Recently, the fundamental network analysis task on signed graphs, namely link sign prediction, has received careful attention. Existing methods learn two target node representations independently, and the sign between these two nodes is predicted based on similarity. However, such a paradigm is node-centric that cannot distinguish node pairs with distinct contexts, thus lowering the prediction performance. Learning pair-centric representation is therefore a rewarding way to be aware of differences between pairs. There is no study yet on how to build such an appropriate representation that can effectively infer the sign between the target node pair. In this paper, we provide a new perspective to conduct link sign prediction within the paradigm of subgraph classification and propose a novel Subgraph-based link Sign Prediction (SSP) model. Technically, SSP uses importance-based sampling to extract an informative subgraph around each target node pair. For each subgraph, an innovative node labeling scheme is designed to encode its structural and signed information for representation learning. To further utilize the subgraph representation for imbalanced sign classification, SSP employs self-pruning contrastive learning to gain balanced representations. Extensive experiments on real-world datasets demonstrate that SSP consistently and significantly outperforms all the state-of-the-art baselines.
引用
收藏
页码:256 / 265
页数:10
相关论文
共 50 条
  • [31] Sparsified Subgraph Memory for Continual Graph Representation Learning
    Zhang, Xikun
    Song, Dongjin
    Tao, Dacheng
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 1335 - 1340
  • [32] Knowledge Graph Representation Learning Based on Automatic Network Search for Link Prediction
    Gu, Zefeng
    Chen, Hua
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 135 (03): : 2497 - 2514
  • [33] Knowledge Graph Representation Learning for Link Prediction with Three-Way Decisions
    Peng, Zhihan
    Yu, Hong
    ROUGH SETS (IJCRS 2021), 2021, 12872 : 266 - 278
  • [34] Cross View Link Prediction by Learning Noise-resilient Representation Consensus
    Wei, Xiaokai
    Xu, Linchuan
    Cao, Bokai
    Yu, Philip S.
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), 2017, : 1611 - 1619
  • [35] Structure-Enhanced Graph Representation Learning for Link Prediction in Signed Networks
    Zhang, Yunke
    Yang, Zhiwei
    Yu, Bo
    Chen, Hechang
    Li, Yang
    Zhao, Xuehua
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 40 - 52
  • [36] A Representation Learning Link Prediction Approach Using Line Graph Neural Networks
    Tai, Yu
    Yang, Hongwei
    He, Hui
    Wu, Xinglong
    Zhang, Weizhe
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 195 - 207
  • [37] Disentangled Link Prediction for Signed Social Networks via Disentangled Representation Learning
    Xu, Linchuan
    Wei, Xiaokai
    Cao, Jiannong
    Yu, Philip S.
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 676 - 685
  • [38] Relation semantic fusion in subgraph for inductive link prediction in knowledge graphs
    Liu, Hongbo
    Lu, Jicang
    Zhang, Tianzhi
    Hou, Xuemei
    An, Peng
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [39] Searching for Embeddings in a Haystack: Link Prediction on Knowledge Graphs with Subgraph Pruning
    Joshi, Unmesh
    Urbani, Jacopo
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2817 - 2823
  • [40] Molecular subgraph representation learning based on spatial structure transformer
    Zhang, Shaoguang
    Lu, Jianguang
    Tang, Xianghong
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 8197 - 8212