Low-Rank and Sparse Metamorphic Autoencoders for Unsupervised Pathology Disentanglement

被引:0
|
作者
Uzunova, Hristina [1 ]
Handels, Heinz [1 ,2 ]
Ehrhardt, Jan [1 ,2 ]
机构
[1] German Res Ctr Artificial Intelligence, Lubeck, Germany
[2] Univ Lubeck, Inst Med Informat, Lubeck, Germany
关键词
Low-rank and sparse; Metamorphic autoencoders; Unsupervised anomaly detection;
D O I
10.1007/978-3-031-25046-0_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to establish population-based analysis of image data from multi-center studies, it is often helpful to disentangle images in their shape and appearance components. However, abnormal (e.g. pathological) and normal appearances of images strongly differ and should ideally be separated in the modeling process. In this work, we propose a metamorphic autoencoder for the disentanglement of shape as well as normal and abnormal appearance of medical images by integrating a low-rank and sparse decomposition into the training process. Experiments show that this method can reliably be used for unsupervised pathology disentanglement opening perspectives for unsupervised pathology segmentation, pseudo-healthy image synthesis and conditional image generation.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 50 条
  • [21] Sparse and low-rank multivariate hawkes processes
    Bacry, Emmanuel
    Bompaire, Martin
    Gaïffas, Stéphane
    Muzy, Jean-Francois
    Journal of Machine Learning Research, 2020, 21
  • [22] Low-rank and sparse embedding for dimensionality reduction
    Han, Na
    Wu, Jigang
    Liang, Yingyi
    Fang, Xiaozhao
    Wong, Wai Keung
    Teng, Shaohua
    NEURAL NETWORKS, 2018, 108 : 202 - 216
  • [23] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [24] NONNEGATIVE LOW-RANK SPARSE COMPONENT ANALYSIS
    Cohen, Jeremy E.
    Gillis, Nicolas
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8226 - 8230
  • [25] Multimodal sparse and low-rank subspace clustering
    Abavisani, Mahdi
    Patel, Vishal M.
    INFORMATION FUSION, 2018, 39 : 168 - 177
  • [26] Sparse subspace clustering with low-rank transformation
    Xu, Gang
    Yang, Mei
    Wu, Qiufeng
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (07): : 3141 - 3154
  • [27] Parametric PDEs: sparse or low-rank approximations?
    Bachmayr, Markus
    Cohen, Albert
    Dahmen, Wolfgang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 1661 - 1708
  • [28] Boosted Sparse and Low-Rank Tensor Regression
    He, Lifang
    Chen, Kun
    Xu, Wanwan
    Zhou, Jiayu
    Wang, Fei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [29] Improved sparse low-rank matrix estimation
    Parekh, Ankit
    Selesnick, Ivan W.
    SIGNAL PROCESSING, 2017, 139 : 62 - 69
  • [30] STRUCTURED SPARSE REPRESENTATION WITH LOW-RANK INTERFERENCE
    Dao, Minh
    Suo, Yuanming
    Chin, Sang
    Tran, Trac D.
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 106 - 110