A Posteriori Error Analysis for Pressure-Robust HDG Methods for the Stationary Incompressible Navier-Stokes Equations

被引:0
|
作者
Leng, Haitao [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510000, Guangdong, Peoples R China
关键词
Hybridizable discontinuous Galerkin method; A posteriori error estimate; Divergence-free; Pressure-robustness; Navier-Stokes equations; DISCONTINUOUS GALERKIN METHOD; FINITE-ELEMENT METHODS; APPROXIMATION;
D O I
10.1007/s10915-023-02104-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hybridizable discontinuous Galerkin method with divergence-free and H(div)-conforming velocity field is considered in this paper for the stationary incompressible Navier-Stokes equations. The pressure-robustness, which means that a priori error estimates for the velocity is independent of the pressure error, is satisfied. As a consequence, an efficient and reliable a posteriori error estimator is proved for the L-2-errors in the velocity gradient and pressure under a smallness assumption. We conclude by several numerical examples which reveal the pressure-robustness and show the performance of the obtained a posteriori error estimator.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A posteriori error analysis for Navier-Stokes equations coupled with Darcy problem
    Hadji, M. L.
    Assala, A.
    Nouri, F. Z.
    CALCOLO, 2015, 52 (04) : 559 - 576
  • [32] KRYLOV METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    EDWARDS, WS
    TUCKERMAN, LS
    FRIESNER, RA
    SORENSEN, DC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 110 (01) : 82 - 102
  • [33] A POSTERIORI ERROR ESTIMATES FOR A DISTRIBUTED OPTIMAL CONTROL PROBLEM OF THE STATIONARY NAVIER-STOKES EQUATIONS
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2898 - 2923
  • [34] Projection methods for the incompressible Navier-Stokes equations
    Zhang Qing-Hai
    Li Yang
    ACTA PHYSICA SINICA, 2021, 70 (13)
  • [35] Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods
    Philip Lukas Lederer
    Christian Merdon
    Joachim Schöberl
    Numerische Mathematik, 2019, 142 : 713 - 748
  • [36] MIXED FINITE ELEMENT METHODS FOR INCOMPRESSIBLE FLOW: STATIONARY NAVIER-STOKES EQUATIONS
    Cai, Zhiqiang
    Wang, Chunbo
    Zhang, Shun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) : 79 - 94
  • [37] A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATION OF UNSTEADY INCOMPRESSIBLE STOCHASTIC NAVIER-STOKES EQUATIONS
    Yang, Xiaoyuan
    Duan, Yuanyuan
    Guo, Yuhua
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) : 1579 - 1600
  • [38] A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes
    Qiu, Weifeng
    Shi, Ke
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1943 - 1967
  • [39] Pressure correction algebraic splitting methods for the incompressible Navier-Stokes equations
    Saleri, F
    Veneziani, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) : 174 - 194
  • [40] HHO Methods for the Incompressible Navier-Stokes and the Incompressible Euler Equations
    Lorenzo Botti
    Francesco Carlo Massa
    Journal of Scientific Computing, 2022, 92