D-former: a U-shaped Dilated Transformer for 3D medical image segmentation

被引:0
|
作者
Wu, Yixuan [1 ]
Liao, Kuanlun [2 ]
Chen, Jintai [2 ]
Wang, Jinhong [2 ]
Chen, Danny Z. [3 ]
Gao, Honghao [4 ,5 ]
Wu, Jian [6 ,7 ]
机构
[1] Zhejiang Univ, Sch Med, Hangzhou 310030, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310058, Peoples R China
[3] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[4] Gachon Univ, Coll Future Ind, Seongnam 13120, South Korea
[5] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[6] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Hangzhou 310058, Peoples R China
[7] Zhejiang Univ, Sch Publ Hlth, Hangzhou 310058, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 02期
基金
中国国家自然科学基金;
关键词
Medical image analysis; Segmentation; Transformer; Long-range dependency; Position encoding; NETWORKS; ATTENTION;
D O I
10.1007/s00521-022-07859-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer-aided medical image segmentation has been applied widely in diagnosis and treatment to obtain clinically useful information of shapes and volumes of target organs and tissues. In the past several years, convolutional neural network (CNN)-based methods (e.g., U-Net) have dominated this area, but still suffered from inadequate long-range information capturing. Hence, recent work presented computer vision Transformer variants for medical image segmentation tasks and obtained promising performances. Such Transformers modeled long-range dependency by computing pair-wise patch relations. However, they incurred prohibitive computational costs, especially on 3D medical images (e.g., CT and MRI). In this paper, we propose a new method called Dilated Transformer, which conducts self-attention alternately in local and global scopes for pair-wise patch relations capturing. Inspired by dilated convolution kernels, we conduct the global self-attention in a dilated manner, enlarging receptive fields without increasing the patches involved and thus reducing computational costs. Based on this design of Dilated Transformer, we construct a U-shaped encoder-decoder hierarchical architecture called D-Former for 3D medical image segmentation. Experiments on the Synapse and ACDC datasets show that our D-Former model, trained from scratch, outperforms various competitive CNN-based or Transformer-based segmentation models at a low computational cost without time-consuming per-training process.
引用
收藏
页码:1931 / 1944
页数:14
相关论文
共 50 条
  • [31] Hybrid 3D Medical Image Segmentation Using CNN and Frequency Transformer Fusion
    Labbihi, Ismayl
    Meslouhi, Othmane El
    Elassad, Zouhair Elamrani Abou
    Benaddy, Mohamed
    Kardouchi, Mustapha
    Akhloufi, Moulay
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [32] EPT-Net: Edge Perception Transformer for 3D Medical Image Segmentation
    Yang, Jingyi
    Jiao, Licheng
    Shang, Ronghua
    Liu, Xu
    Li, Ruiyang
    Xu, Longchang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (11) : 3229 - 3243
  • [33] Architecture Analysis and Benchmarking of 3D U-Shaped Deep Learning Models for Thoracic Anatomical Segmentation
    Harirpoush, Arash
    Rasoulian, Amirhossein
    Kersten-Oertel, Marta
    Xiao, Yiming
    IEEE ACCESS, 2024, 12 : 127592 - 127603
  • [34] UM2Former: U-Shaped Multimixed Transformer Network for Large-Scale Hyperspectral Image Semantic Segmentation
    Xu, Aijun
    Xue, Zhaohui
    Li, Ziyu
    Cheng, Shun
    Su, Hongjun
    Xia, Junshi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [35] 3D U-Shaped Yagi Uda Nantenna for Nanoscale Applications
    Goyal, Kartik
    Srivastava, Abhishek
    2015 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSC), 2015, : 65 - 69
  • [36] EFFICIENT 3D TRANSFORMER WITH CLUSTER-BASED DOMAIN-ADVERSARIAL LEARNING FOR 3D MEDICAL IMAGE SEGMENTATION
    Zhang, Haoran
    Chen, Hao
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [37] 3D Swin Transformer for Partial Medical Auto Segmentation
    Rangnekar, Aneesh
    Jiang, Jue
    Veeraraghavan, Harini
    FAST, LOW-RESOURCE, AND ACCURATE ORGAN AND PAN-CANCER SEGMENTATION IN ABDOMEN CT, FLARE 2023, 2024, 14544 : 222 - 235
  • [38] Dynamic Linear Transformer for 3D Biomedical Image Segmentation
    Zhang, Zheyuan
    Bagci, Ulas
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 : 171 - 180
  • [39] Improved Medical Image Segmentation Model Based on 3D U-Net
    林威
    范红
    胡晨熙
    杨宜
    禹素萍
    倪林
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (04) : 311 - 316
  • [40] 3D U2-Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation
    Huang, Chao
    Han, Hu
    Yao, Qingsong
    Zhu, Shankuan
    Zhou, S. Kevin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 291 - 299