共 50 条
(Co, Mn)(Co, Mn)2O4/CoO/Al8Mn5 three-phase nanoneedle array with crystalline-amorphous interfacial for enhanced capacitance
被引:5
|作者:
Zhang, Man
[1
]
Wang, Tongde
[2
]
Zhang, Dewen
[2
]
Man, Shuaishuai
[3
]
Xu, Shilin
[2
]
Miao, Yidong
[1
]
Sui, Yanwei
[1
,2
]
Qi, Jiqiu
[2
]
Wei, Fuxiang
[2
]
Dang, Feng
[4
]
Cao, Peng
[5
]
Zhang, Wen
[5
]
机构:
[1] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Peoples R China
[2] China Univ Min & Technol, Sch Mat Sci & Phys, Jiangsu Prov High efficiency Energy Storage Techno, Xuzhou 221116, Peoples R China
[3] Chongqing Univ, Coll Chem & Chem Engn, Chongqing 401331, Peoples R China
[4] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[5] Univ Auckland, Dept Chem & Mat Engn, Private Bag 92019, Auckland 1142, New Zealand
关键词:
Dealloying;
Synchronous heterophase synthetic;
Nanoneedle array;
Oxygen vacancies;
Crystalline -amorphous heterostructure;
PERFORMANCE ASYMMETRIC SUPERCAPACITOR;
NANOPARTICLES;
ELECTRODES;
EVOLUTION;
METAL;
OXIDE;
D O I:
10.1016/j.jelechem.2023.117180
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
Introducing oxygen vacancies and dense crystalline-amorphous interfacial appropriately is a rational strategy to obtain high energy density cathode materials for supercapacitors. Herein, we synthesized (Co, Mn)(Co, Mn)2O4/CoO/Al8Mn5 three-phase nanoneedle array via a synchronous heterophase synthetic strategy. The obtained (Co, Mn)(Co, Mn)2O4/CoO/Al8Mn5 with oxygen vacancies and dense crystalline-amorphous interface exhibited outstanding specific capacitance of 1033.51 F g-1 at the current density of 1.0 A g-1 in 1 M KOH electrolyte, and yields 83.7 % capacitance retention after 5000 cycles. The density functional theory (DFT) cal-culations further reveal that the charge redistribution optimize adsorption energies at the oxygen vacancy interfacial sites. Thus, the preferential adsorption of intermediates is favored at these places. Combining the merits of crystalline and amorphous phases also could improve the cathode conductivity and enhance the con-centration of active sites. Consequently, this work demonstrates that the simultaneous design of oxygen vacan-cies and dense crystal-amorphous interface sites is an effective strategy to develop ultrafast and high-energy pseudocapacitors.
引用
收藏
页数:9
相关论文