Kernel-Based Methods for Solving Time-Dependent Advection-Diffusion Equations on Manifolds

被引:4
|
作者
Yan, Qile [1 ]
Jiang, Shixiao W. [2 ]
Harlim, John [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] ShanghaiTech Univ, Inst Math Sci, Shanghai 201210, Peoples R China
[3] Penn State Univ, Inst Computat & Data Sci, Dept Math, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
关键词
Parabolic PDEs on manifolds; Local kernel; Ghost point diffusion maps; Diffusion maps; Mesh-free PDE solvers; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT METHODS; ELLIPTIC PDES; SCHEME;
D O I
10.1007/s10915-022-02045-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Kernel Based High Order "Explicit" Unconditionally Stable Scheme for Nonlinear Degenerate Advection-Diffusion Equations
    Christlieb, Andrew
    Guo, Wei
    Jiang, Yan
    Yang, Hyoseon
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [32] On the stability of alternating-direction explicit methods for advection-diffusion equations
    Campbell, L. J.
    Yin, B.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (06) : 1429 - 1444
  • [33] Approximation of Stochastic Advection-Diffusion Equations with Predictor-Corrector Methods
    Mojarrad, Fatemeh Nassajian
    Soheili, Ali R.
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (02) : 469 - 479
  • [34] Kernel Based High Order “Explicit” Unconditionally Stable Scheme for Nonlinear Degenerate Advection-Diffusion Equations
    Andrew Christlieb
    Wei Guo
    Yan Jiang
    Hyoseon Yang
    Journal of Scientific Computing, 2020, 82
  • [35] Evolving Surface Finite Element Methods for Random Advection-Diffusion Equations
    Djurdjevac, Ana
    Elliott, Charles M.
    Kornhuber, Ralf
    Ranner, Thomas
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (04): : 1656 - 1684
  • [36] Optimal control in heterogeneous domain decomposition methods for advection-diffusion equations
    Agoshkov, Valery
    Gervasio, Paola
    Quarteroni, Alfio
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2006, 3 (02) : 147 - 176
  • [37] New numerical methods for solving the time-dependent Maxwell equations
    De Raedt, H
    Kole, JS
    Michielsen, KFL
    Figge, MT
    COMPUTATIONAL ACCELERATOR PHYSICS 2002, 2005, 175 : 63 - 72
  • [38] SUPG-stabilized time-DG finite and virtual elements for the time-dependent advection-diffusion equation
    da Veiga, L. Beirao
    Dassi, F.
    Gomez, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436
  • [39] ANALYSIS OF A SPACE-TIME HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR THE ADVECTION-DIFFUSION PROBLEM ON TIME-DEPENDENT DOMAINS
    Kirk, K. L. A.
    Horvath, T. L.
    Cesmelioglu, A.
    Rhebergen, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (04) : 1677 - 1696
  • [40] Optimal Control in Heterogeneous Domain Decomposition Methods for Advection-Diffusion Equations
    Valery Agoshkov
    Paola Gervasio
    Alfio Quarteroni
    Mediterranean Journal of Mathematics, 2006, 3 : 147 - 176