Dualities in One-Dimensional Quantum Lattice Models: Topological Sectors

被引:18
|
作者
Lootens, Laurens [1 ,2 ]
Delcamp, Clement [1 ]
Verstraete, Frank [1 ,2 ]
机构
[1] Univ Ghent, Dept Phys & Astron, Krijgslaan 281, B-9000 Ghent, Belgium
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
来源
PRX QUANTUM | 2024年 / 5卷 / 01期
关键词
DEFECTS; CATEGORIES; INVARIANTS; BOUNDARIES; SUBFACTORS;
D O I
10.1103/PRXQuantum.5.010338
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It has been a long-standing open problem to construct a general framework for relating the spectra of dual theories to each other. Here, we solve this problem for the case of one-dimensional quantum lattice models with symmetry -twisted boundary conditions. In Ref. [PRX Quantum 4, 020357], dualities are defined between (categorically) symmetric models that only differ in a choice of module category. Using matrix product operators, we construct from the data of module functors explicit symmetry operators preserving boundary conditions as well as intertwiners mapping topological sectors of dual models onto one another. We illustrate our construction with a family of examples that are in the duality class of the spin -21 Heisenberg XXZ model. One model has symmetry operators forming the fusion category Rep(S3) of representations of the group S3. We find that the mapping between its topological sectors and those of the XXZ model is associated with the nontrivial braided autoequivalence of the Drinfel'd center of Rep(S3).
引用
收藏
页数:36
相关论文
共 50 条
  • [31] Ladder operators for integrable one-dimensional lattice models
    Takizawa, MC
    Links, JR
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 417 - 420
  • [32] ONE-DIMENSIONAL LATTICE GAS MODELS - DIVERGENCE OF THE VISCOSITY
    DHUMIERES, D
    LALLEMAND, P
    QIAN, YH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1989, 308 (07): : 585 - 590
  • [33] Fidelity susceptibility in one-dimensional disordered lattice models
    Wei, Bo-Bo
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [34] Asymptotics of Gibbs measures in one-dimensional lattice models
    Nekhoroshev, N.N.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 2004, (01): : 11 - 17
  • [35] Sequencing one-dimensional Majorana materials for topological quantum computing
    Minissale, Marco
    Bondavalli, Paolo
    Figueira, M. S.
    Le Lay, Guy
    JOURNAL OF PHYSICS-MATERIALS, 2024, 7 (03):
  • [36] Gap solitons in a one-dimensional driven-dissipative topological lattice
    Pernet, Nicolas
    St-Jean, Philippe
    Solnyshkov, Dmitry D.
    Malpuech, Guillaume
    Zambon, Nicola Carlon
    Fontaine, Quentin
    Real, Bastian
    Jamadi, Omar
    Lemaitre, Aristide
    Morassi, Martina
    Le Gratiet, Luc
    Baptiste, Teo
    Harouri, Abdelmounaim
    Sagnes, Isabelle
    Amo, Alberto
    Ravets, Sylvain
    Bloch, Jacqueline
    NATURE PHYSICS, 2022, 18 (06) : 678 - +
  • [37] Tunable topological phases with fermionic atoms in a one-dimensional flux lattice
    Deng, Y.
    Lu, R.
    You, L.
    PHYSICAL REVIEW B, 2017, 96 (14)
  • [38] Gap solitons in a one-dimensional driven-dissipative topological lattice
    Nicolas Pernet
    Philippe St-Jean
    Dmitry D. Solnyshkov
    Guillaume Malpuech
    Nicola Carlon Zambon
    Quentin Fontaine
    Bastian Real
    Omar Jamadi
    Aristide Lemaître
    Martina Morassi
    Luc Le Gratiet
    Téo Baptiste
    Abdelmounaim Harouri
    Isabelle Sagnes
    Alberto Amo
    Sylvain Ravets
    Jacqueline Bloch
    Nature Physics, 2022, 18 : 678 - 684
  • [39] Hidden-symmetry-protected topological phases on a one-dimensional lattice
    Li, Linhu
    Chen, Shu
    EPL, 2015, 109 (04)
  • [40] Topological insulator and particle pumping in a one-dimensional shaken optical lattice
    Mei, Feng
    You, Jia-Bin
    Zhang, Dan-Wei
    Yang, X. C.
    Fazio, R.
    Zhu, Shi-Liang
    Kwek, L. C.
    PHYSICAL REVIEW A, 2014, 90 (06):