Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process

被引:0
|
作者
Gong, Wei-Tai [1 ]
Li, Yan [1 ]
Sun, Ya-Bin [1 ]
Shi, Yan-Ling [1 ]
Li, Xiao-Jin [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
关键词
negative bias temperature instability (NBTI); high-k metal gate (HKMG); threshold voltage shift; interface trap; gate oxide defect; ON-THE-FLY; PROCESS DEPENDENCE;
D O I
10.1088/1674-1056/ace034
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Degradation induced by the negative bias temperature instability (NBTI) can be attributed to three mutually uncoupled physical mechanisms, i.e., the generation of interface traps (Delta V-IT), hole trapping in pre-existing gate oxide defects (Delta V-HT), and the generation of gate oxide defects (Delta V-OT). In this work, the characteristic of NBTI for p-type MOSFET fabricated by using a 28-nm high-k metal gate (HKMG) process is thoroughly studied. The experimental results show that the degradation is enhanced at a larger stress bias and higher temperature. The effects of the three underlying subcomponents are evaluated by using the comprehensive models. It is found that the generation of interface traps dominates the NBTI degradation during long-time NBTI stress. Moreover, the NBTI parameters of the power-law time exponent and temperature activation energy as well as the gate oxide field acceleration are extracted. The dependence of operating lifetime on stress bias and temperature is also discussed. It is observed that NBTI lifetime significantly decreases as the stress increases. Furthermore, the decrease of charges related to interface traps and hole detrapping in pre-existing gate oxide defects are used to explain the recovery mechanism after stress.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Investigation of degradation and recovery characteristics of NBTI in 28-nm high-k metal gate process
    巩伟泰
    李闫
    孙亚宾
    石艳玲
    李小进
    Chinese Physics B, 2023, 32 (12) : 719 - 726
  • [2] RF and broadband noise investigation in High-k/Metal Gate 28-nm CMOS bulk transistor
    Danneville, F.
    Poulain, L.
    Tagro, Y.
    Lepilliet, S.
    Dormieu, B.
    Gloria, D.
    Scheer, P.
    Dambrine, G.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2014, 27 (5-6) : 736 - 747
  • [3] Gate Engineering to Improve Effective Resistance of 28-nm High-k Metal Gate CMOS Devices
    Jeong, JinHyuk
    Lee, Ho
    Kang, DongHae
    Kim, SoYoung
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (01) : 259 - 264
  • [4] Improving ESD Robustness of pMOS Device With Embedded SCR in 28-nm High-k/Metal Gate CMOS Process
    Lin, Chun-Yu
    Chang, Pin-Hsin
    Chang, Rong-Kun
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (04) : 1349 - 1352
  • [5] Impact of Inner Pickup on ESD Robustness of Multifinger MOSFET in 28-nm High-k/Metal Gate CMOS Process
    Lin, Chun-Yu
    Chang, Pin-Hsin
    Chang, Rong-Kun
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2015, 15 (04) : 633 - 636
  • [6] Investigation of low-frequency noise of 28-nm technology process of high-k/metal gate p-MOSFETs with fluorine incorporation
    Kao, Tsung-Hsien
    Chang, Shoou-Jinn
    Fang, Yean-Kuen
    Huang, Po-Chin
    Wang, Bo-Chin
    Wu, Chung-Yi
    Wu, San-Lein
    SOLID-STATE ELECTRONICS, 2016, 115 : 7 - 11
  • [7] 28nm FDSOI high-K metal gate CD variability investigation
    Desvoivres, L.
    Gouraud, P.
    Le Gratiet, B.
    Bouyssou, R.
    Ranica, R.
    Gallon, C.
    Thomas, I.
    ADVANCED ETCH TECHNOLOGY FOR NANOPATTERNING III, 2014, 9054
  • [8] Cost-Effective 28-nm LSTP CMOS using Gate-First Metal Gate/High-k Technology
    Tomimatsu, T.
    Goto, Y.
    Kato, H.
    Amma, M.
    Igarashi, M.
    Kusakabe, Y.
    Takeuchi, M.
    Ohbayashi, S.
    Sakashita, S.
    Kawahara, T.
    Mizutani, M.
    Inoue, M.
    Sawada, M.
    Kawasaki, Y.
    Yamanari, S.
    Miyagawa, Y.
    Takeshima, Y.
    Yamamoto, Y.
    Endo, S.
    Hayashi, T.
    Nishida, Y.
    Horita, K.
    Yamashita, T.
    Oda, H.
    Tsukamoto, K.
    Inoue, Y.
    Fujimoto, H.
    Sato, Y.
    Yamashita, K.
    Mitsuhashi, R.
    Matsuyama, S.
    Moriyama, Y.
    Nakanishi, K.
    Noda, T.
    Sahara, Y.
    Koike, N.
    Hirase, J.
    Yamada, T.
    Ogawa, H.
    Ogura, M.
    2009 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2009, : 36 - +
  • [9] Process development of high-k metal gate aluminum CMP at 28 nm technology node
    Hsien, Y. H.
    Hsu, H. K.
    Tsai, T. C.
    Lin, Welch
    Huang, R. P.
    Chen, C. H.
    Yang, C. L.
    Wu, J. Y.
    MICROELECTRONIC ENGINEERING, 2012, 92 : 19 - 23
  • [10] A Novel "Hybrid" High-k/Metal Gate Process For 28nm High Performance CMOSFETs
    Lai, C. M.
    Lin, C. T.
    Cheng, L. W.
    Hsu, C. H.
    Tseng, J. T.
    Chiang, T. F.
    Chou, C. H.
    Chen, Y. W.
    Yu, C. H.
    Hsu, S. H.
    Chen, C. G.
    Lee, Z. C.
    Lin, J. F.
    Yang, C. L.
    Ma, G. H.
    Chien, S. C.
    2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, 2009, : 607 - 610