Automated deep learning for classification of dental implant radiographs using a large multi-center dataset

被引:22
|
作者
Park, Won-Se [1 ,2 ]
Huh, Jong-Ki [1 ,3 ]
Lee, Jae-Hong [1 ,4 ,5 ]
机构
[1] Korean Acad Oral & Maxillofacial Implantol KAOMI, Implant Res Inst, Seoul, South Korea
[2] Yonsei Univ, Dept Adv Gen Dent, Coll Dent, Seoul, South Korea
[3] Yonsei Univ, Gangnam Severance Hosp, Dept Oral & Maxillofacial Surg, Coll Dent, 211 Eonju Ro, Seoul 06273, South Korea
[4] Jeonbuk Natl Univ, Coll Dent, Dept Periodontol, 567 Baekje Daero, Jeonju 54896, South Korea
[5] Jeonbuk Natl Univ, Inst Oral Biosci, 567 Baekje Daero, Jeonju 54896, South Korea
基金
新加坡国家研究基金会;
关键词
IDENTIFICATION; PROFESSIONALS;
D O I
10.1038/s41598-023-32118-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study aimed to evaluate the accuracy of automated deep learning (DL) algorithm for identifying and classifying various types of dental implant systems (DIS) using a large-scale multicenter dataset. Dental implant radiographs of pos-implant surgery were collected from five college dental hospitals and 10 private dental clinics, and validated by the National Information Society Agency and the Korean Academy of Oral and Maxillofacial Implantology. The dataset contained a total of 156,965 panoramic and periapical radiographic images and comprised 10 manufacturers and 27 different types of DIS. The accuracy, precision, recall, F1 score, and confusion matrix were calculated to evaluate the classification performance of the automated DL algorithm. The performance metrics of the automated DL based on accuracy, precision, recall, and F1 score for 116,756 panoramic and 40,209 periapical radiographic images were 88.53%, 85.70%, 82.30%, and 84.00%, respectively. Using only panoramic images, the DL algorithm achieved 87.89% accuracy, 85.20% precision, 81.10% recall, and 83.10% F1 score, whereas the corresponding values using only periapical images achieved 86.87% accuracy, 84.40% precision, 81.70% recall, and 83.00% F1 score, respectively. Within the study limitations, automated DL shows a reliable classification accuracy based on large-scale and comprehensive datasets. Moreover, we observed no statistically significant difference in accuracy performance between the panoramic and periapical images. The clinical feasibility of the automated DL algorithm requires further confirmation using additional clinical datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Deep Learning for Automated Classification of Inferior Vena Cava Filter Types on Radiographs
    Ni, Jason C.
    Shpanskaya, Katie
    Han, Michelle
    Lee, Edward H.
    Do, Bao H.
    Kuo, William T.
    Yeom, Kristen W.
    Wang, David S.
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2020, 31 (01) : 66 - 73
  • [42] Automated segmentation of brain metastases with deep learning: A multi-center, randomized crossover, multi-reader evaluation study
    Luo, Xiao
    Yang, Yadi
    Yin, Shaohan
    Li, Hui
    Shao, Ying
    Zheng, Dechun
    Li, Xinchun
    Li, Jianpeng
    Fan, Weixiong
    Li, Jing
    Ban, Xiaohua
    Lian, Shanshan
    Zhang, Yun
    Yang, Qiuxia
    Zhang, Weijing
    Zhang, Cheng
    Ma, Lidi
    Luo, Yingwei
    Zhou, Fan
    Wang, Shiyuan
    Lin, Cuiping
    Li, Jiao
    Luo, Ma
    He, Jianxun
    Xu, Guixiao
    Gao, Yaozong
    Shen, Dinggang
    Sun, Ying
    Mou, Yonggao
    Zhang, Rong
    Xie, Chuanmiao
    NEURO-ONCOLOGY, 2024, 26 (11) : 2140 - 2151
  • [43] Automated machine learning-based radiomics analysis versus deep learning-based classification for thyroid nodule on ultrasound images: a multi-center study
    Liu, Zelong
    Deyer, Louisa
    Yang, Arnold
    Liu, Steven
    Gong, Jingqi
    Yang, Yang
    Huang, Mingqian
    Doshi, Amish
    Lu, Meng
    Lee, Denise
    Deyer, Timothy
    Mei, Xueyan
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 23 - 28
  • [44] Automatic classification of canine thoracic radiographs using deep learning
    Tommaso Banzato
    Marek Wodzinski
    Silvia Burti
    Valentina Longhin Osti
    Valentina Rossoni
    Manfredo Atzori
    Alessandro Zotti
    Scientific Reports, 11
  • [45] Automatic classification of canine thoracic radiographs using deep learning
    Banzato, Tommaso
    Wodzinski, Marek
    Burti, Silvia
    Osti, Valentina Longhin
    Rossoni, Valentina
    Atzori, Manfredo
    Zotti, Alessandro
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [46] The impact of multi-center PET data harmonization on the classification performance of deep learning networks in neurological imaging
    Fahmi, R.
    Sibille, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S30 - S31
  • [47] Reliable and efficient automated short-answer scoring for a large dataset using active learning and deep learning
    Osaka, Junpu
    Maeda, Arata
    Oka, Haruki
    Mori, Yasukuni
    Ishioka, Tsunenori
    Suyari, Hiroki
    INTERACTIVE LEARNING ENVIRONMENTS, 2025,
  • [48] A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images
    Jin, Lei
    Sun, Tianyang
    Liu, Xi
    Cao, Zehong
    Liu, Yan
    Chen, Hong
    Ma, Yixin
    Zhang, Jun
    Zou, Yaping
    Liu, Yingchao
    Shi, Feng
    Shen, Dinggang
    Wu, Jinsong
    ISCIENCE, 2023, 26 (11)
  • [49] Dual center validation of deep learning for automated multi-label segmentation of thoracic anatomy in bedside chest radiographs
    Busch, Felix
    Xu, Lina
    Sushko, Dmitry
    Weidlich, Matthias
    Truhn, Daniel
    Mueller-Franzes, Gustav
    Heimer, Maurice M.
    Niehues, Stefan M.
    Makowski, Marcus R.
    Hinsche, Markus
    Vahldiek, Janis L.
    Aerts, Hugo J. W. L.
    Adams, Lisa C.
    Bressem, Keno K.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 234
  • [50] A Dataset of apical periodontitis lesions in panoramic radiographs for deep-learning-based classification and detection
    Do, Hoang Viet
    Vo, Truong Nhu Ngoc
    Nguyen, Phu Thang
    Luong, Thi Hong Lan
    Cu, Nguyen Giap
    Le, Hoang Son
    Data in Brief, 54