Machine learning-assisted global DNA methylation fingerprint analysis for differentiating early-stage lung cancer from benign lung diseases

被引:16
|
作者
Lu, Dechan [1 ]
Chen, Yanping [2 ]
Ke, Longfeng [3 ]
Wu, Weilin [1 ]
Yuan, Liwen [1 ]
Feng, Shangyuan [1 ]
Huang, Zufang [1 ]
Lu, Yudong [4 ]
Wang, Jing [1 ]
机构
[1] Fujian Normal Univ, Key Lab Optoelect Sci & Technol Med, Fujian Prov Key Lab Photon Technol, Minist Educ, Fuzhou 350117, Fujian, Peoples R China
[2] Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 350014, Fujian, Peoples R China
[3] Fujian Med Univ, Fujian Canc Hosp, Lab Mol Pathol, Clin Oncol Sch, Fuzhou 350014, Fujian, Peoples R China
[4] Fujian Normal Univ, Coll Chem & Mat Sci, Fujian Prov Key Lab Adv Oriented Chem Engineer, Fujian Key Lab Polymer Mat, Fuzhou 350117, Fujian, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Cytosine methylation; Surface -enhanced Raman spectroscopy; Early -stage lung cancer; Global DNA methylation; ENHANCED RAMAN-SCATTERING; GENOMIC DNA; SERS; HYPOMETHYLATION; SPECTROSCOPY; DERIVATIVES; CYTOSINE;
D O I
10.1016/j.bios.2023.115235
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
DNA methylation plays a critical role in the development of human tumors. However, routine characterization of DNA methylation can be time-consuming and labor-intensive. We herein describe a sensitive, simple surface -enhanced Raman spectroscopy (SERS) approach for identifying the DNA methylation pattern in early-stage lung cancer (LC) patients. By comparing SERS spectra of methylated DNA bases or sequences with their coun-terparts, we identified a reliable spectral marker of cytosine methylation. To move toward clinical applications, we applied our SERS strategy to detect the methylation patterns of genomic DNA (gDNA) extracted from cell line models as well as formalin-fixed paraffin-embedded tissues of early-stage LC and benign lung diseases (BLD) patients. In a clinical cohort of 106 individuals, our results showed distinct methylation patterns in gDNA be-tween early-stage LC (n = 65) and BLD patients (n = 41), suggesting cancer-induced DNA methylation alter-ations. Combined with partial least square discriminant analysis, early-stage LC and BLD patients were differentiated with an area under the curve (AUC) value of 0.85. We believe that the SERS profiling of DNA methylation alterations, together with machine learning could potentially offer a promising new route toward the early detection of LC.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Accurate detection of early-stage lung cancer using a panel of circulating cell-free DNA methylation biomarkers
    Shuo Hu
    Jinsheng Tao
    Minhua Peng
    Zhujia Ye
    Zhiwei Chen
    Haisheng Chen
    Haifeng Yu
    Bo Wang
    Jian-Bing Fan
    Bin Ni
    Biomarker Research, 11
  • [42] Computer-assisted diagnosis of early-stage lung adenocarcinoma using deep learning
    Trandafir, T.
    Wolf, J.
    Akram, F.
    Li, Y.
    Dingemans, A.
    Stubbs, A.
    von der Thusen, J.
    VIRCHOWS ARCHIV, 2022, 481 (SUPPL 1) : S81 - S81
  • [43] Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution
    Abbosh, Christopher
    Birkbak, Nicolai J.
    Wilson, Gareth A.
    Jamal-Hanjani, Mariam
    Constantin, Tudor
    Salari, Raheleh
    Le Quesne, John
    Moore, David A.
    Veeriah, Selvaraju
    Rosenthal, Rachel
    Marafioti, Teresa
    Kirkizlar, Eser
    Watkins, Thomas B. K.
    McGranahan, Nicholas
    Ward, Sophia
    Martinson, Luke
    Riley, Joan
    Fraioli, Francesco
    Al Bakir, Maise
    Gronroos, Eva
    Zambrana, Francisco
    Endozo, Raymondo
    Bi, Wenya Linda
    Fennessy, Fiona M.
    Sponer, Nicole
    Johnson, Diana
    Laycock, Joanne
    Shafi, Seema
    Czyzewska-Khan, Justyna
    Rowan, Andrew
    Chambers, Tim
    Matthews, Nik
    Turajlic, Samra
    Hiley, Crispin
    Lee, Siow Ming
    Forster, Martin D.
    Ahmad, Tanya
    Falzon, Mary
    Borg, Elaine
    Lawrence, David
    Hayward, Martin
    Kolvekar, Shyam
    Panagiotopoulos, Nikolaos
    Janes, Sam M.
    Thakrar, Ricky
    Ahmed, Asia
    Blackhall, Fiona
    Summers, Yvonne
    Hafez, Dina
    Naik, Ashwini
    NATURE, 2017, 545 (7655) : 446 - +
  • [44] Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution
    Christopher Abbosh
    Nicolai J. Birkbak
    Gareth A. Wilson
    Mariam Jamal-Hanjani
    Tudor Constantin
    Raheleh Salari
    John Le Quesne
    David A. Moore
    Selvaraju Veeriah
    Rachel Rosenthal
    Teresa Marafioti
    Eser Kirkizlar
    Thomas B. K. Watkins
    Nicholas McGranahan
    Sophia Ward
    Luke Martinson
    Joan Riley
    Francesco Fraioli
    Maise Al Bakir
    Eva Grönroos
    Francisco Zambrana
    Raymondo Endozo
    Wenya Linda Bi
    Fiona M. Fennessy
    Nicole Sponer
    Diana Johnson
    Joanne Laycock
    Seema Shafi
    Justyna Czyzewska-Khan
    Andrew Rowan
    Tim Chambers
    Nik Matthews
    Samra Turajlic
    Crispin Hiley
    Siow Ming Lee
    Martin D. Forster
    Tanya Ahmad
    Mary Falzon
    Elaine Borg
    David Lawrence
    Martin Hayward
    Shyam Kolvekar
    Nikolaos Panagiotopoulos
    Sam M. Janes
    Ricky Thakrar
    Asia Ahmed
    Fiona Blackhall
    Yvonne Summers
    Dina Hafez
    Ashwini Naik
    Nature, 2017, 545 : 446 - 451
  • [45] Deep Learning-Assisted Computer-Aided Diagnosis System for Early Detection of Lung Cancer
    Lisha, R.
    Kumar, C. Agees
    Raj, T. Ajith Bosco
    JOURNAL OF CLINICAL ULTRASOUND, 2025,
  • [46] ENHANCED DETECTION OF EARLY-STAGE LUNG CANCER WITH AN ULTRASENSITIVE PLASMA-BASED METHYLATION ASSAY
    Mazzone, Peter J.
    Frumkin, Danny
    Wasserstrom, Adam
    Tammemagi, Carl M.
    Lam, Stephen C.
    Gieske, Michael
    Herrera, Luis
    Kalanjeri, Satish
    McGuire, Anna L.
    Rieger-Christ, Kimberly
    Seaman, Joseph C.
    Tanner, Nichole T.
    Waddell, Thomas K.
    Silvestri, Gerard A.
    CHEST, 2023, 164 (04) : 6507A - 6508A
  • [47] Early-Stage Lung Cancer Diagnosis by Deep Learning-Based Spectroscopic Analysis of Circulating Exosomes
    Shin, Hyunku
    Oh, Seunghyun
    Hong, Soonwoo
    Kang, Minsung
    Kang, Daehyeon
    Ji, Yong-gu
    Choi, Byeong Hyeon
    Kang, Ka-Won
    Jeong, Hyesun
    Park, Yong
    Hong, Sunghoi
    Kim, Hyun Koo
    Choi, Yeonho
    ACS NANO, 2020, 14 (05) : 5435 - 5444
  • [48] A prognostic predictor panel with DNA methylation biomarkers for early-stage lung adenocarcinoma in Asian and Caucasian populations
    I-Ying Kuo
    Jayu Jen
    Lien-Huei Hsu
    Han-Shui Hsu
    Wu-Wei Lai
    Yi-Ching Wang
    Journal of Biomedical Science, 23
  • [49] A prognostic predictor panel with DNA methylation biomarkers for early-stage lung adenocarcinoma in Asian and Caucasian populations
    Kuo, I-Ying
    Jen, Jayu
    Hsu, Lien-Huei
    Hsu, Han-Shui
    Lai, Wu-Wei
    Wang, Yi-Ching
    JOURNAL OF BIOMEDICAL SCIENCE, 2016, 23
  • [50] Implementation of a Pilot Study to Analyze Circulating Tumor DNA in Early-Stage Lung Cancer
    Espiga De Macedo, Joana
    Taveira-Gomes, Tiago
    Machado, Jose Carlos
    Hespanhol, Venceslau
    ACTA MEDICA PORTUGUESA, 2024, 37 (01) : 10 - 19