The Doubly Metric Dimension of Cylinder Graphs and Torus Graphs

被引:4
|
作者
Nie, Kairui [1 ,2 ]
Xu, Kexiang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Math, Nanjing 210016, Peoples R China
[2] MIIT Key Lab Math Modelling & High Performance, Comp Air Vehicles, Nanjing 210016, Peoples R China
关键词
Metric dimension; Doubly metric dimension; Cylinder graph; Torus graph; RESOLVING SETS;
D O I
10.1007/s40840-022-01404-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two vertices x and y in a connected graph G are doubly resolved by two vertices u, v is an element of V (G) if d(G)(x, u) - d(G)(y, u) not equal d(G)(x, v) - d(G)(y, u). A set S is a doubly resolving set of G if each pair of vertices of G is doubly resolved by some pair of vertices in S. The minimum cardinality of doubly resolving sets of a graph G is the doubly metric dimension of G. In this paper, we provide both a lower and an upper bound on the doubly metric dimension of Cartesian products G square H and generalize the known result on that of P-2 square C-n. Moreover, we determine the doubly metric dimensions of grid graphs and torus graphs.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Metric dimension of unit graphs
    Pranjali
    Kumar, Amit
    Sharma, Rakshita
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [32] Metric dimension of directed graphs
    Rajan, Bharati
    Rajasingh, Indra
    Cynthia, Jude Annie
    Manuel, Paul
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (07) : 1397 - 1406
  • [33] On the metric dimension and spectrum of graphs
    Farhan, Mohammad
    Baskoro, Edy Tri
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [34] On metric dimension of permutation graphs
    Michael Hallaway
    Cong X. Kang
    Eunjeong Yi
    Journal of Combinatorial Optimization, 2014, 28 : 814 - 826
  • [35] On the metric dimension of bipartite graphs
    Jothi, M. Anandha
    Sankar, K.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (03) : 287 - 290
  • [36] On the fractional metric dimension of graphs
    Feng, Min
    Lv, Benjian
    Wang, Kaishun
    DISCRETE APPLIED MATHEMATICS, 2014, 170 : 55 - 63
  • [37] Nonlocal Metric Dimension of Graphs
    Klavzar, Sandi
    Kuziak, Dorota
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [38] Nonlocal metric dimension of graphs
    Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
    不详
    不详
    不详
    arXiv,
  • [39] On the metric dimension of infinite graphs
    Caceres, J.
    Hernando, C.
    Mora, M.
    Pelayo, I. M.
    Puertas, M. L.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2618 - 2626
  • [40] On the metric dimension of Grassmann graphs
    Bailey, Robert F.
    Meagher, Karen
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2011, 13 (04): : 97 - 104