A novel botnet attack detection for IoT networks based on communication graphs

被引:1
|
作者
Munoz, David Concejal [1 ]
Valiente, Antonio del-Corte [2 ]
机构
[1] Inetum Espana SA, C Maria Portugal, 9-11, Bldg 1, Madrid 28050, Spain
[2] Univ Alcala, Polytech Sch, Dept Comp Engn, Barcelona Rd Km 33-6, Madrid 28871, Spain
关键词
Autoencoders; Communication graphs; Cyberattacks; Internet of Things; INTRUSION DETECTION SYSTEM; SECURITY; INTERNET;
D O I
10.1186/s42400-023-00169-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intrusion detection systems have been proposed for the detection of botnet attacks. Various types of centralized or distributed cloud-based machine learning and deep learning models have been suggested. However, the emergence of the Internet of Things (IoT) has brought about a huge increase in connected devices, necessitating a different approach. In this paper, we propose to perform detection on IoT-edge devices. The suggested architecture includes an anomaly intrusion detection system in the application layer of IoT-edge devices, arranged in software-defined networks. IoT-edge devices request information from the software-defined networks controller about their own behaviour in the network. This behaviour is represented by communication graphs and is novel for IoT networks. This representation better characterizes the behaviour of the device than the traditional analysis of network traffic, with a lower volume of information. Botnet attack scenarios are simulated with the IoT-23 dataset. Experimental results show that attacks are detected with high accuracy using a deep learning model with low device memory requirements and significant storage reduction for training.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] IoT Botnet Detection Based on the Behaviors of DNS Queries
    Fan, Chun-I
    Shie, Cheng-Han
    Hsu, Che-Ming
    Ban, Tao
    Morikawa, Tomohiro
    Takahashi, Takeshi
    2022 5TH IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING (IEEE DSC 2022), 2022,
  • [32] Deep Learning Approaches for DDoS Attack Detection in Communication Networks and IoT: A Comprehensive Review
    Abdulrahman, Nabeel Fouad
    Singh, Mandeep Singh Jit
    JURNAL KEJURUTERAAN, 2025, 37 (01): : 323 - 333
  • [33] Feature selection and hybrid CNNF deep stacked autoencoder for botnet attack detection in IoT
    Kalidindi, Archana
    Arrama, Mahesh Babu
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 122
  • [34] Lightweight Model for Botnet Attack Detection in Software Defined Network-Orchestrated IoT
    Negera, Worku Gachena
    Schwenker, Friedhelm
    Debelee, Taye Girma
    Melaku, Henock Mulugeta
    Feyisa, Degaga Wolde
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [35] Review of Botnet Attack Detection in SDN-Enabled IoT Using Machine Learning
    Negera, Worku Gachena
    Schwenker, Friedhelm
    Debelee, Taye Girma
    Melaku, Henock Mulugeta
    Ayano, Yehualashet Megeresa
    SENSORS, 2022, 22 (24)
  • [36] Detection of Packet Dropping Attack Based on Evidence Fusion in IoT Networks
    Ding, Weichen
    Zhai, Wenbin
    Liu, Liang
    Gu, Ying
    Gao, Hang
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [37] A SEL for attack detection in IoT/IIoT networks
    Abdulkareem, Sulyman Age
    Foh, Chuan Heng
    Carrez, Francois
    Moessner, Klaus
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 230
  • [38] An Aggregated Mutual Information Based Feature Selection with Machine Learning Methods for Enhancing IoT Botnet Attack Detection
    Al-Sarem, Mohammed
    Saeed, Faisal
    Alkhammash, Eman H.
    Alghamdi, Norah Saleh
    SENSORS, 2022, 22 (01)
  • [39] Botnet Detection and Mitigation Model for IoT Networks Using Federated Learning
    Filho, Francisco Lopes de Caldas
    Soares, Samuel Carlos Meneses
    Oroski, Elder
    Albuquerque, Robson de Oliveira
    da Mata, Rafael Zerbini Alves
    de Mendonca, Fabio Lucio Lopes
    de Sousa Jr, Rafael Timoteo
    SENSORS, 2023, 23 (14)
  • [40] A Technique for Generating a Botnet Dataset for Anomalous Activity Detection in IoT Networks
    Ullah, Imtiaz
    Mahmoud, Qusay H.
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 134 - 140