Prototype Completion for Few-Shot Learning

被引:9
|
作者
Zhang, Baoquan [1 ]
Li, Xutao [1 ]
Ye, Yunming [1 ]
Feng, Shanshan [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Few-Shot learning; image classification; meta-learning; CLASSIFICATION;
D O I
10.1109/TPAMI.2023.3277881
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot learning (FSL) aims to recognize novel classes with few examples. Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning. However, results show that the fine-tuning step makes marginal improvements. In this paper, 1) we figure out the reason, i.e., in the pre-trained feature space, the base classes already form compact clusters while novel classes spread as groups with large variances, which implies that fine-tuning feature extractor is less meaningful; 2) instead of fine-tuning feature extractor, we focus on estimating more representative prototypes. Consequently, we propose a novel prototype completion based meta-learning framework. This framework first introduces primitive knowledge (i.e., class-level part or attribute annotations) and extracts representative features for seen attributes as priors. Second, a part/attribute transfer network is designed to learn to infer the representative features for unseen attributes as supplementary priors. Finally, a prototype completion network is devised to learn to complete prototypes with these priors. Moreover, to avoid the prototype completion error, we further develop a Gaussian based prototype fusion strategy that fuses the mean-based and completed prototypes by exploiting the unlabeled samples. At last, we also develop an economic prototype completion version for FSL, which does not need to collect primitive knowledge, for a fair comparison with existing FSL methods without external knowledge. Extensive experiments show that our method: i) obtains more accurate prototypes; ii) achieves superior performance on both inductive and transductive FSL settings.
引用
收藏
页码:12250 / 12268
页数:19
相关论文
共 50 条
  • [41] Intermediate prototype network for few-shot segmentation
    Luo, Xiaoliu
    Duan, Zhao
    Zhang, Taiping
    SIGNAL PROCESSING, 2023, 203
  • [42] Interclass Prototype Relation for Few-Shot Segmentation
    Okazawa, Atsuro
    COMPUTER VISION, ECCV 2022, PT XXIX, 2022, 13689 : 362 - 378
  • [43] Holistic Prototype Activation for Few-Shot Segmentation
    Cheng, Gong
    Lang, Chunbo
    Han, Junwei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4650 - 4666
  • [44] Contrastive prototype network with prototype augmentation for few-shot classification
    Jiang, Mengjuan
    Fan, Jiaqing
    He, Jiangzhen
    Du, Weidong
    Wang, Yansong
    Li, Fanzhang
    INFORMATION SCIENCES, 2025, 686
  • [45] Federated Few-shot Learning
    Wang, Song
    Fu, Xingbo
    Ding, Kaize
    Chen, Chen
    Chen, Huiyuan
    Li, Jundong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2374 - 2385
  • [46] Defensive Few-Shot Learning
    Li, Wenbin
    Wang, Lei
    Zhang, Xingxing
    Qi, Lei
    Huo, Jing
    Gao, Yang
    Luo, Jiebo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5649 - 5667
  • [47] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [48] Survey on Few-shot Learning
    Zhao K.-L.
    Jin X.-L.
    Wang Y.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 349 - 369
  • [49] Variational Few-Shot Learning
    Zhang, Jian
    Zhao, Chenglong
    Ni, Bingbing
    Xu, Minghao
    Yang, Xiaokang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1685 - 1694
  • [50] Interventional Few-Shot Learning
    Yue, Zhongqi
    Zhang, Hanwang
    Sun, Qianru
    Hua, Xian-Sheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33