Periodic Solutions for a Class of Semilinear Euler-Bernoulli Beam Equations with Variable Coefficients

被引:0
|
作者
Wei, Hui [1 ]
Ji, Shuguan [2 ,3 ]
机构
[1] Luoyang Normal Univ, Dept Math, Luoyang 471934, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[3] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
关键词
Existence; Periodic solutions; Beam equation; DIMENSIONAL WAVE-EQUATION; VIBRATIONS; KAM;
D O I
10.1007/s10884-023-10296-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of periodic solutions for a class of semilinear Euler-Bernoulli beam equations with variable coefficients. Such a mathematical model is used to describe the infinitesimal, free, undamped in-plane bending vibrations of a thin straight elastic beam. When the frequency is rational, we acquire some fundamental properties of the variable coefficients beam operator and in particular prove that its inverse operator is compact on its range. Based on these properties, we obtain the existence of periodic solutions when the nonlinear term is monotone and bounded.
引用
收藏
页码:237 / 249
页数:13
相关论文
共 50 条
  • [41] Motion Planning for a Damped Euler-Bernoulli Beam
    Meurer, Thomas
    Schroeck, Johannes
    Kugi, Andreas
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2566 - 2571
  • [42] Free vibrations of a complex Euler-Bernoulli beam
    Popplewell, N
    Chang, DQ
    JOURNAL OF SOUND AND VIBRATION, 1996, 190 (05) : 852 - 856
  • [43] Vibration control of a rotating Euler-Bernoulli beam
    Diken, H
    JOURNAL OF SOUND AND VIBRATION, 2000, 232 (03) : 541 - 551
  • [44] Optimal vibration quenching for an Euler-Bernoulli beam
    Sloss, JM
    Bruch, JC
    Kao, CC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 239 (02) : 306 - 331
  • [45] Solvability of the clamped Euler-Bernoulli beam equation
    Baysal, Onur
    Hasanov, Alemdar
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 85 - 90
  • [46] Matching Boundary Conditions for the Euler-Bernoulli Beam
    Feng, Yaoqi
    Wang, Xianming
    SHOCK AND VIBRATION, 2021, 2021
  • [47] Control of a viscoelastic translational Euler-Bernoulli beam
    Berkani, Amirouche
    Tatar, Nasser-eddine
    Khemmoudj, Ammar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (01) : 237 - 254
  • [48] Stabilization of a viscoelastic rotating Euler-Bernoulli beam
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2939 - 2960
  • [49] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Gorain, GC
    Bose, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (04): : 411 - 416
  • [50] PARAMETER-ESTIMATION FOR THE EULER-BERNOULLI BEAM
    KUNISCH, K
    GRAIF, E
    MATEMATICA APLICADA E COMPUTACIONAL, 1985, 4 (02): : 95 - 124