Parallel Implementation of Nonadditive Gaussian Process Potentials for Monte Carlo Simulations

被引:1
|
作者
Broad, Jack [3 ]
Wheatley, Richard J. [1 ]
Graham, Richard S. [2 ]
机构
[1] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England
[2] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
关键词
POLARIZABLE MULTIPOLAR ELECTROSTATICS;
D O I
10.1021/acs.jctc.3c00113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A strategy is presented to implement Gaussian processpotentialsin molecular simulations through parallel programming. Attention isfocused on the three-body nonadditive energy, though all algorithmsextend straightforwardly to the additive energy. The method to distributepairs and triplets between processes is general to all potentials.Results are presented for a simulation box of argon, including fullbox and atom displacement calculations, which are relevant to MonteCarlo simulation. Data on speed-up are presented for up to 120 processesacross four nodes. A 4-fold speed-up is observed over five processes,extending to 20-fold over 40 processes and 30-fold over 120 processes.
引用
收藏
页码:4322 / 4333
页数:12
相关论文
共 50 条
  • [31] Modeling focusing Gaussian beams in a turbid medium with Monte Carlo simulations
    Hokr, Brett H.
    Bixler, Joel N.
    Elpers, Gabriel
    Zollars, Byron
    Thomas, Robert J.
    Yakovlev, Vladislav V.
    Scully, Marlan O.
    OPTICS EXPRESS, 2015, 23 (07): : 8699 - 8705
  • [32] Spatial updating grand canonical Monte Carlo algorithms for fluid simulation: Generalization to continuous potentials and parallel implementation
    O'Keeffe, C. J.
    Ren, Ruichao
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (19):
  • [33] A Python']Python program for the implementation of the Γ-method for Monte Carlo simulations
    De Palma, Barbara
    Erba, Marco
    Mantovani, Luca
    Mosco, Nicola
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 234 : 294 - 301
  • [34] Massively parallel implementation of the worldline quantum Monte Carlo method
    Somsky, W.R.
    Gubernatis, J.E.
    Computers in Physics, 1992, 6 (02):
  • [35] Parallel Implementation of the Heisenberg Model Using Monte Carlo on GPGPU
    Campos, Alessandra M.
    Pecanha, Joao Paulo
    Pampanelli, Patricia
    De Almeida, Rafael B.
    Lobosco, Marcelo
    Vieira, Marcelo B.
    Dantas, Socrates de O.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT III, 2011, 6784 : 654 - 667
  • [36] Monte Carlo simulations of neon and argon using ab initio potentials
    Leonhard, K
    Deiters, UK
    MOLECULAR PHYSICS, 2000, 98 (20) : 1603 - 1616
  • [37] Marginalizing Gaussian Process Hyperparameters Using Sequential Monte Carlo
    Svensson, Andreas
    Dahlin, Johan
    Schon, Thomas B.
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 477 - 480
  • [38] DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS BY A MONTE-CARLO METHOD
    HASOFER, AM
    JOURNAL OF SOUND AND VIBRATION, 1987, 112 (02) : 283 - 293
  • [39] Monte Carlo simulations
    Dapor, M
    ELECTRON-BEAM INTERACTIONS WITH SOLIDS: APPLICATION OF THE MONTE CARLO METHOD TO ELECTRON SCATTERING PROBLEMS, 2003, 186 : 69 - 90
  • [40] On the convergence of parallel tempering Monte Carlo simulations of LJ38
    Liu, HB
    Jordan, KD
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (23): : 5203 - 5207