Deep-Learning-Enabled Intelligent Design of Thermal Metamaterials

被引:30
|
作者
Wang, Yihui [1 ]
Sha, Wei [1 ]
Xiao, Mi [1 ]
Qiu, Cheng-Wei [2 ]
Gao, Liang [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Kent 117583, Singapore
关键词
deep learning; intelligent design; thermal cloak; thermal metamaterials;
D O I
10.1002/adma.202302387
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal metamaterials are mixture-based materials that are engineered to manipulate, control, and process the flow of heat, enabling numerous advanced thermal metadevices. Conventional thermal metamaterials are predominantly designed with tractable regular geometries owing to the delicate analytical solution and easy-to-implement effective structures. Nevertheless, it is challenging to achieve the design of thermal metamaterials with arbitrary geometry, letting alone intelligent (automatic, real-time, and customizable) design of thermal metamaterials. Here, an intelligent design framework of thermal metamaterials is presented via a pre-trained deep learning model, which gracefully achieves the desired functional structures of thermal metamaterials with exceptional speed and efficiency, regardless of arbitrary geometry. It possesses incomparable versatility and is of great flexibility to achieve the corresponding design of thermal metamaterials with different background materials, anisotropic geometries, and thermal functionalities. The transformation thermotics-induced, freeform, background-independent, and omnidirectional thermal cloaks, whose structural configurations are automatically designed in real-time according to shape and background, are numerically and experimentally demonstrated. This study sets up a novel paradigm for an automatic and real-time design of thermal metamaterials in a new design scenario. More generally, it may open a door to the realization of an intelligent design of metamaterials in also other physical domains.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI
    Xirui Hou
    Pengfei Guo
    Puyang Wang
    Peiying Liu
    Doris D. M. Lin
    Hongli Fan
    Yang Li
    Zhiliang Wei
    Zixuan Lin
    Dengrong Jiang
    Jin Jin
    Catherine Kelly
    Jay J. Pillai
    Judy Huang
    Marco C. Pinho
    Binu P. Thomas
    Babu G. Welch
    Denise C. Park
    Vishal M. Patel
    Argye E. Hillis
    Hanzhang Lu
    npj Digital Medicine, 6
  • [22] Deep-Learning-Enabled Automatic Optical Inspection for Module-Level Defects in LCD
    Zhu, Haidi
    Huang, Jingchang
    Liu, Huawei
    Zhou, Qianwei
    Zhu, Jianqing
    Li, Baoqing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (02) : 1122 - 1135
  • [23] Deep-learning-enabled self-adaptive microwave cloak without human intervention
    Qian, Chao
    Zheng, Bin
    Shen, Yichen
    Jing, Li
    Li, Erping
    Shen, Lian
    Chen, Hongsheng
    NATURE PHOTONICS, 2020, 14 (06) : 383 - +
  • [24] Zero-Bias Deep-Learning-Enabled Quickest Abnormal Event Detection in IoT
    Liu, Yongxin
    Wang, Jian
    Li, Jianqiang
    Niu, Shuteng
    Wu, Lei
    Song, Houbing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11385 - 11395
  • [25] Deep-learning-enabled self-adaptive microwave cloak without human intervention
    Chao Qian
    Bin Zheng
    Yichen Shen
    Li Jing
    Erping Li
    Lian Shen
    Hongsheng Chen
    Nature Photonics, 2020, 14 : 383 - 390
  • [26] Deep-Learning-Enabled Predictive Maintenance in Industrial Internet of Things: Methods, Applications, and Challenges
    Wang, Hongchao
    Zhang, Weiting
    Yang, Dong
    Xiang, Yuhong
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 2602 - 2615
  • [27] Deep-learning-enabled brain hemodynamic mapping using resting-state fMRI
    Hou, Xirui
    Guo, Pengfei
    Wang, Puyang
    Liu, Peiying
    Lin, Doris D. M.
    Fan, Hongli
    Li, Yang
    Wei, Zhiliang
    Lin, Zixuan
    Jiang, Dengrong
    Jin, Jin
    Kelly, Catherine
    Pillai, Jay J.
    Huang, Judy
    Pinho, Marco C.
    Thomas, Binu P.
    Welch, Babu G.
    Park, Denise C.
    Patel, Vishal M.
    Hillis, Argye E.
    Lu, Hanzhang
    NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [28] High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy
    Horgan, Conor C.
    Jensen, Magnus
    Nagelkerke, Anika
    St-Pierre, Jean-Philippe
    Vercauteren, Tom
    Stevens, Molly M.
    Bergholt, Mads S.
    ANALYTICAL CHEMISTRY, 2021, 93 (48) : 15850 - 15860
  • [29] Offloading Optimization in Edge Computing for Deep-Learning-Enabled Target Tracking by Internet of UAVs
    Yang, Bo
    Cao, Xuelin
    Yuen, Chau
    Qian, Lijun
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12) : 9878 - 9893
  • [30] Deep-learning-enabled Bayesian inference of fuel magnetization in magnetized liner inertial fusion
    Lewis, William E.
    Knapp, Patrick F.
    Slutz, Stephen A.
    Schmit, Paul F.
    Chandler, Gordon A.
    Gomez, Matthew R.
    Harvey-Thompson, Adam J.
    Mangan, Michael A.
    Ampleford, David J.
    Beckwith, Kristian
    PHYSICS OF PLASMAS, 2021, 28 (09)