Thermal Expansion and Thermal Conductivity of Ni/Graphene Composite: Molecular Dynamics Simulation

被引:6
|
作者
Murzaev, Ramil T. [1 ]
Krylova, Karina A. [1 ]
Baimova, Julia A. [1 ]
机构
[1] Russian Acad Sci, Inst Met Superplast Problems, Ufa 450001, Russia
基金
俄罗斯科学基金会;
关键词
crumpled graphene; Ni/graphene composite; molecular dynamics; thermal conductivity; thermal expansion coefficient; INTERATOMIC POTENTIALS; DEFORMATION-BEHAVIOR; MATRIX COMPOSITES; CARBON NANOTUBES; GRAPHENE; NICKEL; ALUMINUM; DIAMOND; NI; METALS;
D O I
10.3390/ma16103747
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, the thermal conductivity and thermal expansion coefficients of a new morphology of Ni/graphene composites are studied by molecular dynamics. The matrix of the considered composite is crumpled graphene, which is composed of crumpled graphene flakes of 2-4 nm size connected by van der Waals force. Pores of the crumpled graphene matrix were filled with small Ni nanoparticles. Three composite structures with different sizes of Ni nanoparticles (or different Ni content-8, 16, and 24 at.% Ni) were considered. The thermal conductivity of Ni/graphene composite was associated with the formation of a crumpled graphene structure (with a high density of wrinkles) during the composite fabrication and with the formation of a contact boundary between the Ni and graphene network. It was found that, the greater the Ni content in the composite, the higher the thermal conductivity. For example, at 300 K, ? = 40 W/(mK) for 8 at.% Ni, ? = 50 W/(mK) for 16 at.% Ni, and ? = 60 W/(mK) for 24 at.% Ni. However, it was shown that thermal conductivity slightly depends on the temperature in a range between 100 and 600 K. The increase in the thermal expansion coefficient from 5 x 10(-6) K-1, with an increase in the Ni content, to 8 x 10(-6) K-1 is explained by the fact that pure Ni has high thermal conductivity. The results obtained on thermal properties combined with the high mechanical properties of Ni/graphene composites allow us to predict its application for the fabrication of new flexible electronics, supercapacitors, and Li-ion batteries.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] The thermal conductivity decomposition of calcite calculated by molecular dynamics simulation
    Momenzadeh, Leila
    Moghtaderi, Behdad
    Buzzi, Olivier
    Liu, Xianfeng
    Sloan, Scott W.
    Murch, Graeme E.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 141 : 170 - 179
  • [42] Molecular dynamics simulation of thermal conductivity of a gas in nanoscale pores
    Mechanical Engineering School, University of Science and Technology Beijing, Beijing 100083, China
    Beijing Keji Daxue Xuebao, 2006, 12 (1182-1185):
  • [43] Thermal conductivity of model zeolites: molecular dynamics simulation study
    Murashov, VV
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (05) : 1261 - 1271
  • [44] Prediction of Thermal Conductivity and Viscosity of Nanofluids by Molecular Dynamics Simulation
    Bushehri, M. K.
    Mohebbi, A.
    Rafsanjani, H. H.
    JOURNAL OF ENGINEERING THERMOPHYSICS, 2016, 25 (03) : 389 - 400
  • [45] Nonequilibrium molecular dynamics simulation of the thermal conductivity of crystals film
    Research Institute of Satellite Technology, Harbin Institute of Technology, Harbin 150080, China
    不详
    Harbin Gongye Daxue Xuebao, 2007, 7 (1028-1030+1035):
  • [46] Thermal Conductivity of Natural Rubber Using Molecular Dynamics Simulation
    He, Yan
    Ma, Lian-Xiang
    Tang, Yuan-Zheng
    Wang, Ze-Peng
    Li, Wei
    Kukulka, David
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) : 3244 - 3248
  • [47] Investigation of the thermal conductivity of a fullerene peapod by molecular dynamics simulation
    Kawamura, Takahiro
    Kangawa, Yoshihiro
    Kakimoto, Koichi
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (7-9) : 2301 - 2305
  • [48] Molecular dynamics simulation of the thermal conductivity of Fcc metallic nanocrystals
    Neek-Amal, M
    Rafii-Tabar, H
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2005, 2 (03) : 438 - 442
  • [49] Molecular-dynamics simulation of thermal conductivity of silicon crystals
    Volz, SG
    Chen, G
    PHYSICAL REVIEW B, 2000, 61 (04): : 2651 - 2656
  • [50] Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols
    Liu W.
    Yang F.
    Yuan H.
    Zhang Y.
    Yi P.
    Zhou H.
    Huagong Xuebao/CIESC Journal, 2020, 71 (11): : 5159 - 5168