Interpreting Conv-LSTM for Spatio-Temporal Soil Moisture Prediction in China

被引:11
|
作者
Huang, Feini [1 ]
Zhang, Yongkun [1 ]
Zhang, Ye [1 ]
Wei, Shangguan [1 ]
Li, Qingliang [2 ]
Li, Lu [1 ]
Jiang, Shijie [3 ]
机构
[1] Sun Yat sen Univ, Sch Atmospher Sci, Southern Marine Sci & Engn Guangdong Lab Zhuhai, Guangdong Prov Key Lab Climate Change, Zhuhai 519082, Peoples R China
[2] Changchun Normal Univ, Coll Comp Sci & Technol, Changchun 130032, Peoples R China
[3] Helmholtz Ctr Environm Res, Dept Computat Hydrosyst, D-04318 Leipzig, Germany
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 05期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
explainable artificial intelligence; deep learning; soil moisture prediction; interpretation; IMPACTS; MODEL;
D O I
10.3390/agriculture13050971
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil moisture (SM) is a key variable in Earth system science that affects various hydrological and agricultural processes. Convolutional long short-term memory (Conv-LSTM) networks are widely used deep learning models for spatio-temporal SM prediction, but they are often regarded as black boxes that lack interpretability and transparency. This study aims to interpret Conv-LSTM for spatio-temporal SM prediction in China, using the permutation importance and smooth gradient methods for global and local interpretation, respectively. The trained Conv-LSTM model achieved a high R2 of 0.92. The global interpretation revealed that precipitation and soil properties are the most important factors affecting SM prediction. Furthermore, the local interpretation showed that the seasonality of variables was more evident in the high-latitude regions, but their effects were stronger in low-latitude regions. Overall, this study provides a novel approach to enhance the trust-building for Conv-LSTM models and to demonstrate the potential of artificial intelligence-assisted Earth system modeling and understanding element prediction in the future.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Assessing spatio-temporal changes of soil moisture: a case study at Karachi, Pakistan
    Sabah, Anam
    Afsar, Sheeba
    ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (24)
  • [42] IMPROVING SOIL MOISTURE SPATIO-TEMPORAL RESOLUTION USING MACHINE LEARNING METHOD
    Cui, Yaokui
    Chen, Xi
    Luo, Zengliang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4574 - 4577
  • [43] Golden eagle optimized CONV-LSTM and non-negativity-constrained autoencoder to support spatial and temporal features in cancer drug response prediction
    Hajim, Wesam Ibrahim
    Zainudin, Suhaila
    Daud, Kauthar Mohd
    Alheeti, Khattab
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [44] Optimization of ecosystem model parameters using spatio-temporal soil moisture information
    Zhu, Lin
    Chen, Jing M.
    Qin, Qiming
    Li, Jianping
    Wang, Lianxi
    ECOLOGICAL MODELLING, 2009, 220 (18) : 2121 - 2136
  • [45] Upscaling In Situ Soil Moisture Observations to Pixel Averages with Spatio-Temporal Geostatistics
    Wang, Jianghao
    Ge, Yong
    Heuvelink, Gerard B. M.
    Zhou, Chenghu
    REMOTE SENSING, 2015, 7 (09): : 11372 - 11388
  • [46] SPATIO-TEMPORAL REQUIREMENTS OF A GEOSYNCHRONOUS SAR SOIL MOISTURE PRODUCT FOR HYDROLOGICAL APPLICATIONS
    Cenci, Luca
    Boni, Giorgio
    Pulvirenti, Luca
    Pignone, Flavio
    Masoero, Alessandro
    Basso, Valerio
    Gabellani, Simone
    Pierdicca, Nazzareno
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5517 - 5520
  • [47] McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis
    Kornelsen, K. C.
    Coulibaly, P.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2013, 17 (04) : 1589 - 1606
  • [48] Results on spatio-temporal estimation of temperature and soil moisture in La Colmena (Paraguay)
    Manzano, J. M.
    Orihuela, Luis
    Pacheco, Erid
    Pereira, Mario
    IFAC PAPERSONLINE, 2022, 55 (32): : 265 - 270
  • [49] Spatio-temporal distribution and emergence of beetles in arable fields in relation to soil moisture
    Holland, J. M.
    Thomas, C. F. G.
    Birkett, T.
    Southway, S.
    BULLETIN OF ENTOMOLOGICAL RESEARCH, 2007, 97 (01) : 89 - 100
  • [50] Factors Determining Spatio-Temporal Variations of Soil Moisture Using Microwave Data
    Sure, Anudeep
    Varade, Divyesh
    Dikshit, Onkar
    2017 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN COMPUTING AND COMMUNICATION TECHNOLOGIES (ICETCCT), 2017, : 50 - 54