The event-triggered state estimation problem with the aid of machine learning for nonlinear systems is considered in this paper. First, we develop a recurrent neural network (RNN) model to predict the nonlinear systems. Second, we design a discrete-time dynamic event-triggered mechanism (ETM) and a state observer based on this ETM for the prediction model. This discrete-time dynamic event-triggered state observer significantly reduces the utilization of communication resources. Third, we establish a sufficient condition to ensure that the state observer can robustly estimate the state vector of the RNN model. Finally, we provide an illustrative example to verify the merit of the obtained results.
机构:
China Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
Niu, Yichun
Sheng, Li
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
Sheng, Li
Gao, Ming
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
Gao, Ming
Zhou, Donghua
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R ChinaChina Univ Petr East China, Coll Control Sci & Engn, Qingdao 266580, Peoples R China
机构:
Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R ChinaQingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
Wang, Min
Liu, Huabo
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R ChinaQingdao Univ, Sch Automat, Qingdao 266071, Peoples R China
机构:
Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague, Czech RepublicCzech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague, Czech Republic
Rehak, Branislav
Lynnyk, Volodymyr
论文数: 0引用数: 0
h-index: 0
机构:
Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague, Czech RepublicCzech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague, Czech Republic
Lynnyk, Volodymyr
2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC),
2021,
: 4701
-
4706