Variable selection in threshold model with a covariate-dependent threshold

被引:0
|
作者
Yang, Lixiong [1 ]
机构
[1] Lanzhou Univ, Sch Management, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable selection; Threshold model; Covariate-dependent threshold; Monte Carlo simulations; Growth-debt nexus; GROWTH; REGRESSION; DEBT;
D O I
10.1007/s00181-022-02340-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies the variable selection problem in threshold model with a covariatedependent threshold, in which the threshold is modeled by a function of candidate variables that affect the separation of regimes. To simultaneously select explanatory variables and the variables that affect the threshold, we develop a variable selection procedure via mixed integer optimization in the l(0)-penalization framework. Monte Carlo simulations are conducted to assess the performance of the suggested variable selection procedure, and the simulation results indicate that the variable selection procedure works well in finite samples. The empirical usefulness of the proposed approach is illustrated with an application to the famous growth-debt nexus.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 50 条
  • [41] COVARIATE-DEPENDENT AGE-AT-ONSET DISTRIBUTIONS FOR HUNTINGTON DISEASE
    KRAWCZAK, M
    BOCKEL, B
    SANDKUIJL, L
    THIES, U
    FENTON, I
    HARPER, PS
    AMERICAN JOURNAL OF HUMAN GENETICS, 1991, 49 (04) : 735 - 745
  • [42] Exact confidence limits for covariate-dependent risk in cultivar trials
    Piepho, HP
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2000, 5 (02) : 202 - 213
  • [43] Threshold regression to accommodate a censored covariate
    Qian, Jing
    Chiou, Sy Han
    Maye, Jacqueline E.
    Atem, Folefac
    Johnson, Keith A.
    Betensky, Rebecca A.
    BIOMETRICS, 2018, 74 (04) : 1261 - 1270
  • [44] Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure
    Ni, Yang
    Stingo, Francesco C.
    Baladandayuthapani, Veerabhadran
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [45] VARIABLE-THRESHOLD THRESHOLD ELEMENTS
    MEISEL, WS
    IEEE TRANSACTIONS ON COMPUTERS, 1968, C 17 (07) : 656 - +
  • [46] COVARIATE-DEPENDENT GENETIC-COUNSELING IN HUNTINGTONS-DISEASE
    CHASE, GA
    MARKSON, LE
    BROOKMEYER, R
    FOLSTEIN, SE
    JOURNAL OF NEUROGENETICS, 1986, 3 (04) : 215 - 223
  • [47] Efficient and doubly robust imputation for covariate-dependent missing responses
    Qin, Jing
    Shao, Jun
    Zhang, Biao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 797 - 810
  • [48] Functional data analysis with covariate-dependent mean and covariance structures
    Zhang, Chenlin
    Lin, Huazhen
    Liu, Li
    Liu, Jin
    Li, Yi
    BIOMETRICS, 2023, 79 (03) : 2232 - 2245
  • [49] Competing risks regression for clustered data with covariate-dependent censoring
    Khanal, Manoj
    Kim, Soyoung
    Fang, Xi
    Ahn, Kwang Woo
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (04) : 1081 - 1099
  • [50] Threshold variable selection of asymmetric stochastic volatility models
    Cathy W. S. Chen
    Feng-Chi Liu
    Mike K. P. So
    Computational Statistics, 2013, 28 : 2415 - 2447