Lithium-Ion Conductor Li2ZrO3-Coated Primary Particles To Optimize the Performance of Li-Rich Mn-Based Cathode Materials

被引:16
|
作者
Chen, Jiarui [1 ]
Cao, Shuang [1 ]
Li, Zhi [1 ]
Li, Heng [1 ]
Guo, Changmeng [1 ]
Wang, Ruijuan [1 ]
Wu, Lei [1 ]
Zhang, Yixu [1 ]
Bai, Yansong [1 ]
Wang, Xianyou [1 ]
机构
[1] Xiangtan Univ, Natl Local Joint Engn Lab Key Mat New Energy Stora, Hunan Prov Key Lab Electrochem Energy Storage & Co, Sch Chem,Natl Base Int Sci & Technol Cooperat, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-ion battery; lithium-rich manganese-basedcathodematerials; molten salt-assisted sintering technology; primary particle coating; capacity retention; SURFACE; VOLTAGE;
D O I
10.1021/acsami.3c07453
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A lithium-rich manganese-based cathodematerial (LRMC) is currentlyconsidered as one of the most promising next-generation materialsfor lithium-ion batteries, which has received much attention, butthe LRMC still faces some key scientific issues to break through,such as poor rate capacity, rapid voltage, capacity decay, and lowfirst coulomb efficiency. In this work, homogeneous Li2ZrO3 (LZO) was successfully coated on the surface of Li1.2Mn0.54Ni0.13Co0.13O2 (LRO) by molten salt-assisted sintering technology. Li2ZrO3 has good chemical and electrochemical stability,which can effectively inhibit the side reaction between electrodematerials and electrolytes and reduce the dissolution of transitionmetal ions. Thus, the as-prepared LRO@LZO composites are expectedto improve the cycling performance. It can be found that the dischargespecific capacity of LRO is 271 mAh g(-1) at 0.1 C,and the capacity retention rate is still 93.7% after 100 cycles at1 C. In addition, Li2ZrO3 is an excellent lithium-ionconductor, which is prone to increasing the lithium-ion transfer rateand improving the rate capacity of LRO. Therefore, this study providesa new solution to improve the structure stability and electrochemicalperformance of LRMCs.
引用
收藏
页码:36394 / 36403
页数:10
相关论文
共 50 条
  • [31] Utilizing the different distribution habit of La and Zr in Li-rich Mn-based cathode to achieve fast lithium-ion diffusion kinetics
    He, Wei
    Liu, Pengfei
    Zhang, Yinggan
    Lin, Jie
    Qu, Baihua
    Zheng, Zhiming
    Wang, Jin
    Zhang, Yiming
    Sa, Baisheng
    Wang, Laisen
    Xie, Qingshui
    Peng, Dong-Liang
    JOURNAL OF POWER SOURCES, 2021, 499
  • [32] Suppressing Mn Reduction of Li-Rich Mn-Based Cathodes by F-Doping for Advanced Lithium-Ion Batteries
    Wang, Yong
    Gu, Hai-Tao
    Song, Jin-Hua
    Feng, Zhen-He
    Zhou, Xin-Bin
    Zhou, Yong-Ning
    Wang, Ke
    Xie, Jing-Ying
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (49): : 27836 - 27842
  • [33] Insight into the atomic structure of Li2MnO3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance
    Song, Yuanzhe
    Zhao, Xuebing
    Wang, Chao
    Bi, Han
    Zhang, Jie
    Li, Sesi
    Wang, Min
    Che, Renchao
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 11214 - 11223
  • [34] Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium-ion batteries
    Ma, Shaomeng
    Hou, Xianhua
    Li, Yajie
    Ru, Qiang
    Hu, Shejun
    Lam, Kwok-ho
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (03) : 2705 - 2715
  • [35] Surface Reconstruction Enhanced Li-Rich Cathode Materials for Durable Lithium-Ion Batteries
    Zhao, Yanshuang
    Lu, Di
    Yun, XiaoRu
    Wang, Jinhui
    Song, Wenjin
    Xie, Wei
    Zuo, LanLan
    Zheng, Chunman
    Xiao, Peitao
    Chen, Yufang
    SMALL METHODS, 2024,
  • [36] ELECTROCHEMICAL, STRUCTURAL AND MAGNETIC STUDY OF Li-RICH CATHODE MATERIALS FOR LITHIUM-ION BATTERY
    Volkov, Vyacheslav
    Pechen, Lidia
    Makhonina, Elena
    Rumyantsev, Alexander
    Koshtyal, Yury
    Politov, Yury
    Pervov, Vladislav
    Eremenko, Igor
    11TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2019), 2020, : 137 - 143
  • [37] Unlocking the Potential of Li-Rich Mn-Based Oxides for High-Rate Rechargeable Lithium-Ion Batteries
    Yang, Yali
    Gao, Chuan
    Luo, Tie
    Song, Jin
    Yang, Tonghuan
    Wang, Hangchao
    Zhang, Kun
    Zuo, Yuxuan
    Xiao, Wukun
    Jiang, Zewen
    Chen, Tao
    Xia, Dingguo
    ADVANCED MATERIALS, 2023, 35 (52)
  • [38] Optimize the surface of the Li-rich cathode materials with lithium phosphate and polyaniline to improve the electrochemical performance
    Xing Li
    Xincun Tang
    Kun Ouyang
    Ping Deng
    Liuchun Huang
    Wei Dang
    Ionics, 2021, 27 : 4649 - 4661
  • [39] Optimize the surface of the Li-rich cathode materials with lithium phosphate and polyaniline to improve the electrochemical performance
    Li, Xing
    Tang, Xincun
    Ouyang, Kun
    Deng, Ping
    Huang, Liuchun
    Dang, Wei
    IONICS, 2021, 27 (11) : 4649 - 4661
  • [40] Concentration-gradient of Li-rich Mn-based cathode materials with enhanced cycling retention
    Cheng, Lanlan
    Yang, Wenyan
    Zhang, Yifang
    Yang, Wei
    Zhou, Hanbo
    Chen, Shengzhou
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976