Engineering Paradigms for Sheared-Flow-Stabilized Z-Pinch Fusion Energy

被引:5
|
作者
Thompson, M. C. [1 ]
Levitt, B. [1 ]
Nelson, B. A. [1 ]
Shumlak, U. [1 ,2 ]
机构
[1] Zap Energy Inc, Seattle, WA 98275 USA
[2] Univ Washington, Aerosp & Energet Res Program, Seattle, WA USA
关键词
Z-pinch; alternative fusion concept; deuterium-tritium; compact fusion reactor; fusion experimental reactor design; POWER-PLANT; COMPACT; EFFICIENCY; DESIGN; FIELD; ARC;
D O I
10.1080/15361055.2023.2209131
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The sheared-flow-stabilized Z-pinch concept is on a path to commercialization at Zap Energy. Recent experiments on the Fusion Z-pinch Experiment (FuZE) device corroborate expected plasma stability and thermonuclear fusion reaction rates. Experimental campaigns are underway to increase the pinch current, the stable plasma duration, and the DD fusion neutron production. The next-generation device FuZE-Q is currently undergoing commissioning and will begin operation at current levels where scientific breakeven-equivalent conditions are expected in the near future. The Z-pinch configuration offers the promise of a compact fusion device owing to its simple geometry, unity beta, and absence of external magnetic field coils.In addition to a robust experimental program pushing plasma performance toward breakeven conditions, Zap Energy has parallel programs developing power handling systems suitable for future power plants. Technologies under development include high-average-power repetitive pulsed power, high-duty-cycle cathodes, and liquid-metal wall systems. High-level features of the conceptual power plant core design are elaborated and compared with other approaches to fusion energy.
引用
收藏
页码:1051 / 1058
页数:8
相关论文
共 50 条
  • [31] Fusion in a Staged Z-pinch
    Wessel, F. J.
    Rahman, H. U.
    Ney, P.
    Valenzuela, J.
    Beg, F.
    Mckee, E.
    Darling, T.
    PHYSICS OF PLASMA-DRIVEN ACCELERATORS AND ACCELERATOR-DRIVEN FUSION, 2016, 1721
  • [32] The Z-pinch approach to fusion
    Chittenden, JP
    PHYSICS WORLD, 2000, 13 (05) : 39 - 43
  • [33] INERTIALLY STABILIZED THERMONUCLEAR Z-PINCH
    WINTERBERG, F
    ATOMKERNENERGIE-KERNTECHNIK, 1983, 43 (01): : 31 - 36
  • [34] Gyrokinetic simulations of m=0 mode in sheared flow Z-pinch plasmas
    Geyko, V. I.
    Dorf, M.
    Angus, J. R.
    PHYSICS OF PLASMAS, 2019, 26 (06)
  • [35] Target physics scaling for Z-pinch inertial fusion energy
    Olson, RE
    FUSION SCIENCE AND TECHNOLOGY, 2005, 47 (04) : 1147 - 1151
  • [36] Fast Z-Pinch,A New Approach for Promising Fusion Energy
    Peng Xianjue
    Engineering Sciences, 2007, (04) : 36 - 44
  • [37] Z-pinch Vlasov-fluid equilibria including sheared-axial flow
    Channon, SW
    Coppins, M
    JOURNAL OF PLASMA PHYSICS, 2001, 66 : 337 - 347
  • [38] Kinetic simulations of sheared flow stabilization in high-temperature Z-pinch plasmas
    Tummel, K.
    Higginson, D. P.
    Link, A. J.
    Schmidt, A. E. W.
    Offermann, D. T.
    Welch, D. R.
    Clark, R. E.
    Shumlak, U.
    Nelson, B. A.
    Golingo, R. P.
    McLean, H. S.
    PHYSICS OF PLASMAS, 2019, 26 (06)
  • [39] Probing local electron temperature and density inside a sheared flow stabilized Z-pinch using portable optical Thomson scattering
    Banasek, J. T.
    Goyon, C.
    Bott-Suzuki, S. C.
    Swadling, G. F.
    Quinley, M.
    Levitt, B.
    Nelson, B. A.
    Shumlak, U.
    McLean, H. S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (02):
  • [40] Sustained Neutron Production from a Sheared-Flow Stabilized Z Pinch
    Zhang, Y.
    Shumlak, U.
    Nelson, B. A.
    Golingo, R. P.
    Weber, T. R.
    Stepanov, A. D.
    Claveau, E. L.
    Forbes, E. G.
    Draper, Z. T.
    Mitrani, J. M.
    McLean, H. S.
    Tummel, K. K.
    Higginson, D. P.
    Cooper, C. M.
    PHYSICAL REVIEW LETTERS, 2019, 122 (13)