A Dynamic Spatio-Temporal Deep Learning Model for Lane-Level Traffic Prediction

被引:5
|
作者
Li, Bao [1 ]
Yang, Quan [2 ]
Chen, Jianjiang [3 ]
Yu, Dongjin [3 ]
Wang, Dongjing [3 ]
Wan, Feng [3 ]
机构
[1] Zhejiang Inst Mech & Elect Engn Co Ltd, Hangzhou 311203, Peoples R China
[2] Zhejiang Testing & Inspect Inst Mech & Elect Prod, Hangzhou 310018, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
BEHAVIORAL-THEORY; SPEED PREDICTION; FLOW PREDICTION; NEURAL-NETWORK;
D O I
10.1155/2023/3208535
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic prediction aims to predict the future traffic state by mining features from history traffic information, and it is a crucial component for the intelligent transportation system. However, most existing traffic prediction methods focus on road segment prediction while ignore the fine-grainedlane-level traffic prediction. From observations, we found that different lanes on the same road segment have similar but not identical patterns of variation. Lane-level traffic prediction can provide more accurate prediction results for humans or autonomous driving systems to make appropriate and efficient decisions. In traffic prediction, the mining of spatial features is an important step and graph-based methods are effective methods. While most existing graph-based methods construct a static adjacent matrix, these methods are difficult to respond to spatio-temporal changes in time. In this paper, we propose a deep learning model for lane-level traffic prediction. Specifically, we take advantage of the graph convolutional network (GCN) with a data-driven adjacent matrix for spatial feature modeling and treat different lanes of the same road segment as different nodes. The data-driven adjacent matrix consists of the fundamental distance-based adjacent matrix and the dynamic lane correlation matrix. The temporal features are extracted with the gated recurrent unit (GRU). Then, we adaptively fuse spatial and temporal features with the gating mechanism to get the final spatio-temporal features for lane-level traffic prediction. Extensive experiments on a real-world dataset validate the effectiveness of our model.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Multistep speed prediction on traffic networks: A deep learning approach considering spatio-temporal dependencies
    Zhang, Zhengchao
    Li, Meng
    Lin, Xi
    Wang, Yinhai
    He, Fang
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 105 : 297 - 322
  • [22] Spatio-Temporal Parallel Transformer Based Model for Traffic Prediction
    Kumar, Rahul
    Mendes-moreira, Joao
    Chandra, Joydeep
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (09)
  • [23] Deep spatio-temporal graph convolutional network for traffic accident prediction
    Yu, Le
    Du, Bowen
    Hu, Xiao
    Sun, Leilei
    Han, Liangzhe
    Lv, Weifeng
    NEUROCOMPUTING, 2021, 423 (423) : 135 - 147
  • [24] Traffic Flow Prediction Based on Deep Spatio-Temporal Domain Adaptation
    Wang, Zhihui
    Li, Bingxin
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PT II, DEXA 2024, 2024, 14911 : 110 - 115
  • [25] DeepRTP: A Deep Spatio-Temporal Residual Network for Regional Traffic Prediction
    Liu, Zhidan
    Huang, Mingliang
    Ye, Zhi
    Wu, Kaishun
    2019 15TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2019), 2019, : 291 - 296
  • [26] Traffic Anomaly Prediction Based on Joint Static-Dynamic Spatio-Temporal Evolutionary Learning
    Liu, Xiaoming
    Zhang, Zhanwei
    Lyu, Lingjuan
    Zhang, Zhaohan
    Xiao, Shuai
    Shen, Chao
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5356 - 5370
  • [27] Modeling Dynamic Spatio-Temporal Correlations for Urban Traffic Flows Prediction
    Awan, Nabeela
    Ali, Ahmad
    Khan, Fazlullah
    Zakarya, Muhammad
    Alturki, Ryan
    Kundi, Mahwish
    Alshehri, Mohammad Dahman
    Haleem, Muhammad
    IEEE ACCESS, 2021, 9 : 26502 - 26511
  • [28] Air quality prediction using spatio-temporal deep learning
    Hu, Keyong
    Guo, Xiaolan
    Gong, Xueyao
    Wang, Xupeng
    Liang, Junqing
    Li, Daoquan
    ATMOSPHERIC POLLUTION RESEARCH, 2022, 13 (10)
  • [29] Deep Learning for Spatio-Temporal Modeling of Dynamic Spontaneous Emotions
    Al Chanti, Dawood
    Caplier, Alice
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (02) : 363 - 376
  • [30] Spatio-temporal deep learning framework for traffic speed forecasting in IoT
    Dai, Fei
    Huang, Penggui
    Xu, Xiaolong
    Qi, Lianyong
    Khosravi, Mohammad R.
    IEEE Internet of Things Magazine, 2020, 3 (04): : 66 - 69