Image processing-based classification of pavement fatigue severity using extremely randomized trees, deep neural network, and convolutional neural network

被引:4
|
作者
Hoang, Nhat-Duc [1 ,2 ]
Tran, Van-Duc [2 ,3 ]
Tran, Xuan-Linh [1 ,2 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
[2] Duy Tan Univ, Fac Civil Engn, Danang, Vietnam
[3] Duy Tan Univ, Int Sch, Da Nang, Vietnam
关键词
Pavement fatigue severity; image processing; extremely randomized trees; deep neural network; convolutional neural network; GLOBAL SENSITIVITY-ANALYSIS; ROAD CRACK DETECTION; ASPHALT PAVEMENTS;
D O I
10.1080/10298436.2023.2201902
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Fatigue failure is a major structural defect found in the asphalt pavement subjected to repeated traffic loadings. In order to establish cost-effective maintenance plans, timely detection of pavement fatigue and classification of its severity are crucial. This study aims at developing an advanced image processing method based on Gaussian steerable filters, projection integrals, and texture descriptors for automating the tasks of interest. The extremely randomized trees (ERT) and deep neural network (DNN) are used to analyze the features extracted from the aforementioned image processing methods. The performance of ERT and DNN is also benchmarked against that of the convolutional neural network. A dataset consisting of 6000 samples has been collected in Da Nang city (Vietnam) to construct and verify the proposed computer vision approaches. Experimental results supported by Wilcoxon signed-rank tests confirm that the ERT-based method has achieved the most desired classification performance with an accuracy rate > 0.93.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Texture based Image Species Classification with Deep Convolutional Neural Network
    Sharma, Geetanjali
    Krishna, C. Rama
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,
  • [12] Cloud Image Classification Method Based on Deep Convolutional Neural Network
    Zhang F.
    Yan J.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2020, 38 (04): : 740 - 746
  • [13] Deep convolutional neural network for glaucoma detection based on image classification
    Gobinath, C.
    Gopinath, M. P.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1957 - 1971
  • [14] POLSAR IMAGE CLASSIFICATION USING ATTENTION BASED SHALLOW TO DEEP CONVOLUTIONAL NEURAL NETWORK
    Alkhatib, Mohammed Q.
    Al-Saad, Mina
    Aburaed, Nour
    Zitouni, M. Sami
    Al-Ahmad, Hussain
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 8034 - 8037
  • [15] Malware classification through image processing with a convolutional neural network
    Marin, David
    Orozco-Rosas, Ulises
    Picos, Kenia
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XVI, 2022, 12225
  • [16] EvoDCNN: An evolutionary deep convolutional neural network for image classification
    Hassanzadeh, Tahereh
    Essam, Daryl
    Sarker, Ruhul
    NEUROCOMPUTING, 2022, 488 : 271 - 283
  • [17] Hyperspectral image reconstruction by deep convolutional neural network for classification
    Li, Yunsong
    Xie, Weiying
    Li, Huaqing
    PATTERN RECOGNITION, 2017, 63 : 371 - 383
  • [18] Deep Convolutional Neural Network for Microscopic Bacteria Image Classification
    Wahid, Md Ferdous
    Hasan, Md Jahid
    Alom, Md Shahin
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2019, : 866 - 869
  • [19] Wetland Classification Using Deep Convolutional Neural Network
    Mandianpari, Masoud
    Rezaee, Mohammad
    Zhang, Yun
    Salehi, Bahram
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9249 - 9252
  • [20] Advancements in Image Classification using Convolutional Neural Network
    Sultana, Farhana
    Sufian, Abu
    Dutta, Paramartha
    2018 FOURTH IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2018, : 122 - 129