Improved Finite-Key Security Analysis of Measurement-Device-Independent Quantum Key Distribution Against a Trojan-Horse Attack

被引:5
|
作者
Ding, Hua-Jian [1 ,2 ,3 ]
Liu, Jing-Yang [1 ,2 ,3 ]
Zhou, Xing-Yu [1 ,2 ,3 ]
Zhang, Chun-Hui [1 ,2 ,3 ]
Li, Jian [1 ,2 ,3 ]
Wang, Qin [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Quantum Informat & Technol, Nanjing 210003, Peoples R China
[2] NUPT, Minist Educ, Broadband Wireless Commun & Sensor Network Technol, Nanjing 210003, Peoples R China
[3] NUPT, Telecommun & Networks Natl Engn Res Ctr, Nanjing 210003, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
UNCONDITIONAL SECURITY;
D O I
10.1103/PhysRevApplied.19.044022
中图分类号
O59 [应用物理学];
学科分类号
摘要
Measurement-device-independent quantum key distribution (MDI QKD) is a promising method for remote key sharing that can eliminate all detector side-channel attacks. However, current security proofs often overlook the potential information leakages from the legitimate users' devices. In a quantum version of Trojan-horse attack (THA), a malicious eavesdropper can inject bright light into the sources of a MDI QKD system and then analyze the back-reflected light to obtain their setting choices, thereby compro-mising the final security. Here, we derive the finite-key security bounds of decoy-state MDI QKD in the presence of THA, which significantly outperform previous analyses in terms of the secret-key rate and transmission distance. Specifically, we analyze a symmetric three-intensity decoy-state MDI QKD pro-tocol and an efficient four-intensity decoy-state MDI QKD protocol. Our results represent a fundamental step in guaranteeing the implementation security of quantum communication systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Finite-key security analysis for quantum key distribution with leaky sources
    Wang, Weilong
    Tamaki, Kiyoshi
    Curty, Marcos
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [32] Hacking measurement-device-independent quantum key distribution
    Lu, Feng-Yu
    Ye, Peng
    Wang, Ze-Hao
    Wang, Shuang
    Yin, Zhen-Qiang
    Wang, Rong
    Huang, Xiao-Jua
    Chen, Wei
    He, De-Yong
    Fan-Yuan, Guan-Je
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICA, 2023, 10 (04): : 520 - 527
  • [33] Measurement-device-independent quantum key distribution with quantum memories
    Abruzzo, Silvestre
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2014, 89 (01)
  • [34] Finite-key analysis for one-sided device-independent quantum key distribution
    Wang, Yang
    Bao, Wan-su
    Li, Hong-wei
    Zhou, Chun
    Li, Yuan
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [35] Trojan-horse attacks on quantum-key-distribution systems
    Gisin, N
    Fasel, S
    Kraus, B
    Zbinden, H
    Ribordy, G
    PHYSICAL REVIEW A, 2006, 73 (02):
  • [36] Statistical fluctuation analysis for measurement-device-independent quantum key distribution
    Ma, Xiongfeng
    Fung, Chi-Hang Fred
    Razavi, Mohsen
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [37] Trojan-horse attacks on quantum key distribution with classical Bob
    Yu-Guang Yang
    Si-Jia Sun
    Qian-Qian Zhao
    Quantum Information Processing, 2015, 14 : 681 - 686
  • [38] Simple security analysis of phase-matching measurement-device-independent quantum key distribution
    Lin, Jie
    Lutkenhaus, Norbert
    PHYSICAL REVIEW A, 2018, 98 (04)
  • [39] Measurement-device-independent quantum key distribution protocols against collective noise
    He, Yefeng
    Ma, Wenping
    MODERN PHYSICS LETTERS B, 2021, 35 (11):
  • [40] Trojan-horse attacks on quantum key distribution with classical Bob
    Yang, Yu-Guang
    Sun, Si-Jia
    Zhao, Qian-Qian
    QUANTUM INFORMATION PROCESSING, 2015, 14 (02) : 681 - 686