Longevity-aware energy management for fuel cell hybrid electric bus based on a novel proximal policy optimization deep reinforcement learning framework

被引:41
|
作者
Huang, Ruchen [1 ,2 ,3 ]
He, Hongwen [1 ,2 ,3 ]
Zhao, Xuyang [1 ,3 ]
Gao, Miaojue [1 ,3 ]
机构
[1] Beijing Inst Technol, Natl Engn Res Ctr Elect Vehicles, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Fuel cell hybrid electric bus; Energy management strategy; Deep reinforcement learning; Proximal policy optimization (PPO); Multi-thread distributed computation; GRADIENT METHODS; PREDICTION; LIFETIME; GO;
D O I
10.1016/j.jpowsour.2023.232717
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the prosperity of artificial intelligence and new energy vehicles, energy-saving technologies for zero -emission fuel cell hybrid electric vehicles through high-efficient deep reinforcement learning algorithms have become a research focus. This article proposes an energy management strategy based on a novel deep rein-forcement learning framework to reduce the hydrogen consumption of a fuel cell hybrid electric bus while suppressing the degradation of the fuel cell. To begin, a novel proximal policy optimization framework is designed by taking advantage of multi-thread distributed computation, and then a promising energy manage-ment strategy based on this novel framework is proposed. Furthermore, the fuel cell degradation model is established and fuel cell longevity is incorporated into the optimization objective. Finally, the adaptability and computational efficiency of the proposed strategy are verified under the test cycle. Simulation results indicate that the proposed strategy improves the training efficiency effectively, and achieves efficient optimization of hydrogen conservation and fuel cell degradation suppression compared with the strategy based on the proximal policy optimization algorithm. This article contributes to energy conservation and lifespan extension for fuel cell vehicles through deep reinforcement learning methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Energy Management Strategy for a Hybrid Electric Vehicle Based on Deep Reinforcement Learning
    Hu, Yue
    Li, Weimin
    Xu, Kun
    Zahid, Taimoor
    Qin, Feiyan
    Li, Chenming
    APPLIED SCIENCES-BASEL, 2018, 8 (02):
  • [32] Reinforcement Learning-Based Energy Optimization for a Fuel Cell Electric Vehicle
    Hou, Shengyan
    Liu, Xuan
    Yin, Hai
    Gao, Jinwu
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1928 - 1933
  • [33] Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus
    Wu, Jingda
    He, Hongwen
    Peng, Jiankun
    Li, Yuecheng
    Li, Zhanjiang
    APPLIED ENERGY, 2018, 222 : 799 - 811
  • [34] Proximal Policy Optimization Based Intelligent Energy Management for Plug-In Hybrid Electric Bus Considering Battery Thermal Characteristic
    Zhang, Chunmei
    Li, Tao
    Cui, Wei
    Cui, Naxin
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (02):
  • [35] A novel data-driven energy management strategy for fuel cell hybrid electric bus based on improved twin delayed deep deterministic policy gradient algorithm
    Huang, Ruchen
    He, Hongwen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 782 - 798
  • [36] Deep reinforcement learning based energy management strategy of fuel cell hybrid railway vehicles considering fuel cell aging
    Deng, Kai
    Liu, Yingxu
    Hai, Di
    Peng, Hujun
    Löwenstein, Lars
    Pischinger, Stefan
    Hameyer, Kay
    Energy Conversion and Management, 2022, 251
  • [37] Deep reinforcement learning based energy management strategy of fuel cell hybrid railway vehicles considering fuel cell aging
    Deng, Kai
    Liu, Yingxu
    Hai, Di
    Peng, Hujun
    Lowenstein, Lars
    Pischinger, Stefan
    Hameyer, Kay
    ENERGY CONVERSION AND MANAGEMENT, 2022, 251
  • [38] Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle
    Ren, Xiaoxia
    Ye, Jinze
    Xie, Liping
    Lin, Xinyou
    ENERGY, 2024, 286
  • [39] Reactive Power Optimization Based on Proximal Policy Optimization of Deep Reinforcement Learning
    Zahng P.
    Zhu Z.
    Xie H.
    Dianwang Jishu/Power System Technology, 2023, 47 (02): : 562 - 570
  • [40] A Deep Reinforcement Learning Framework for Optimizing Fuel Economy of Hybrid Electric Vehicles
    Zhao, Pu
    Wang, Yanzhi
    Chang, Naehyuck
    Zhu, Qi
    Lin, Xue
    2018 23RD ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2018, : 196 - 202