Entire solutions with and without radial symmetry in balanced bistable reaction-diffusion equations

被引:2
|
作者
Taniguchi, Masaharu [1 ]
机构
[1] Okayama Univ, Res Inst Interdisciplinary Sci, 3-1-1 Tsushimanaka,Kita Ku, Okayama 7008530, Japan
基金
日本学术振兴会;
关键词
35C07; 35B08; 35K57; PYRAMIDAL TRAVELING FRONTS; ANCIENT SOLUTIONS; GLOBAL STABILITY; CURVED FRONTS; UNIQUENESS; EXISTENCE; WAVES; CLASSIFICATION; INTERFACES;
D O I
10.1007/s00208-024-02844-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n >= 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} be a given integer. In this paper, we assert that an n-dimensional traveling front converges to an ( n - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document} -dimensional entire solution as the speed goes to infinity in a balanced bistable reaction-diffusion equation. As the speed of an n-dimensional axially symmetric or asymmetric traveling front goes to infinity, it converges to an ( n - 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document} -dimensional radially symmetric or asymmetric entire solution in a balanced bistable reaction-diffusion equation, respectively. We conjecture that the radially asymmetric entire solutions obtained in this paper are associated with the ancient solutions called the Angenent ovals in the mean curvature flows.
引用
收藏
页码:3931 / 3967
页数:37
相关论文
共 50 条
  • [31] Scalar Reaction-Diffusion Equations: Conditional Symmetry, Exact Solutions and Applications
    Cherniha, Roman
    Davydovych, Vasyl'
    NONLINEAR REACTION-DIFFUSION SYSTEMS: CONDITIONAL SYMMETRY, EXACT SOLUTIONS AND THEIR APPLICATIONS IN BIOLOGY, 2017, 2196 : 1 - 44
  • [32] Transition fronts for periodic bistable reaction-diffusion equations
    Ding, Weiwei
    Hamel, Francois
    Zhao, Xiao-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2517 - 2551
  • [33] Transition fronts for periodic bistable reaction-diffusion equations
    Weiwei Ding
    François Hamel
    Xiao-Qiang Zhao
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2517 - 2551
  • [34] Generalized Fronts in Reaction-Diffusion Equations with Bistable Nonlinearity
    Ya Qin SHU
    Wan Tong LI
    Nai Wei LIU
    Acta Mathematica Sinica, 2012, 28 (08) : 1633 - 1646
  • [35] FRONT PROPAGATION FOR REACTION-DIFFUSION EQUATIONS OF BISTABLE TYPE
    BARLES, G
    BRONSARD, L
    SOUGANIDIS, PE
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05): : 479 - 496
  • [36] Generalized Fronts in Reaction-Diffusion Equations with Bistable Nonlinearity
    Ya Qin SHU
    Wan Tong LI
    Nai Wei LIU
    Acta Mathematica Sinica,English Series, 2012, (08) : 1633 - 1646
  • [37] ASYMPTOTIC BEHAVIOR OF NONLOCAL BISTABLE REACTION-DIFFUSION EQUATIONS
    Besse, Christophe
    Capel, Alexandre
    Faye, Gregory
    Fouilhe, Guilhem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (12): : 5967 - 5997
  • [38] Uniqueness of wave speeds in bistable reaction-diffusion equations
    Huang, Yanli
    Lin, Guo
    Pan, Shuxia
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [39] Generalized fronts in reaction-diffusion equations with bistable nonlinearity
    Shu, Ya Qin
    Li, Wan Tong
    Liu, Nai Wei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (08) : 1633 - 1646
  • [40] Generalized fronts in reaction-diffusion equations with bistable nonlinearity
    Ya Qin Shu
    Wan Tong Li
    Nai Wei Liu
    Acta Mathematica Sinica, English Series, 2012, 28 : 1633 - 1646