Variance-based stochastic projection gradient method for two-stage co-coercive stochastic variational inequalities

被引:0
|
作者
Zhou, Bin [1 ]
Jiang, Jie [2 ]
Song, Yongzhong [1 ]
Sun, Hailin [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS,BDMCA, Jiangsu Int Joint Lab BDMCA,Minist Educ, Nanjing 210023, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-stage stochastic variational inequalities; Stochastic approximation; Dynamic sampling; Co-coercivity; APPROXIMATION; SCHEMES;
D O I
10.1007/s11075-024-01779-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existing stochastic approximation (SA)-type algorithms for two-stage stochastic variational inequalities (SVIs) are based on the uniqueness of the second-stage solution, which restricts the use of those algorithms. In this paper, we propose a dynamic sampling stochastic projection gradient method (DS-SPGM) for solving a class of two-stage SVIs satisfying the co-coercive property. With the co-coercive property and the dynamic sampling technique, we can handle the two-stage SVIs when the second-stage problem has multiple solutions and achieve the rate of convergence with O(1/K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{O}(\varvec{1/\sqrt{K}})$$\end{document}. Moreover, numerical experiments show the efficiency of the DS-SPGM.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条