Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach

被引:12
|
作者
Liu, Yidi [1 ]
Yang, Qi [1 ]
Cheng, Junjie [1 ]
Zhang, Long [1 ,2 ]
Luo, Sanzhong [1 ,2 ]
Cheng, Jin-Pei [1 ,2 ]
机构
[1] Tsinghua Univ, Ctr Basic Mol Sci, Dept Chem, Beijing 100084, Peoples R China
[2] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
关键词
Nucleophilicity; Electrophilicity; Machine learning; Molecular descriptors; Prediction; SOLVENT POLARITY; REACTIVITY; SCALE; SOLVATOCHROMISM; PARAMETERS; INDEX; PRINCIPLE; BOND;
D O I
10.1002/cphc.202300162
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nucleophilicity and electrophilicity dictate the reactivity of polar organic reactions. In the past decades, Mayr et al. established a quantitative scale for nucleophilicity (N) and electrophilicity (E), which proved to be a useful tool for the rationalization of chemical reactivity. In this study, a holistic prediction model was developed through a machine-learning approach. rSPOC, an ensemble molecular representation with structural, physicochemical and solvent features, was developed for this purpose. With 1115 nucleophiles, 285 electrophiles, and 22 solvents, the dataset is currently the largest one for reactivity prediction. The rSPOC model trained with the Extra Trees algorithm showed high accuracy in predicting Mayr's N and E parameters with R-2 of 0.92 and 0.93, MAE of 1.45 and 1.45, respectively. Furthermore, the practical applications of the model, for instance, nucleophilicity prediction of NADH, NADPH and a series of enamines showed potential in predicting molecules with unknown reactivity within seconds. An online prediction platform (http://isyn.luoszgroup.com/) was constructed based on the current model, which is available free to the scientific community.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] A MACHINE-LEARNING APPROACH TOWARDS SOLVING THE INVOICE PAYMENT PREDICTION PROBLEM
    Schoonbee, L.
    Moore, W. R.
    Van Vuuren, J. H.
    SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2022, 33 (04) : 126 - 146
  • [32] Machine-learning approach for in silico prediction of lipid-based nanoparticles self-assembly
    Selwa, Edithe
    Iorga, Bogdan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [33] A machine learning approach for predicting the nucleophilicity of organic molecules
    Saini, Vaneet
    Sharma, Aditya
    Nivatia, Dhruv
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (03) : 1821 - 1829
  • [34] Improving mmWave backhaul reliability: A machine-learning based approach
    Ferreira, Tania
    Figueiredo, Alexandre
    Raposo, Duarte
    Luis, Miguel
    Rito, Pedro
    Sargento, Susana
    AD HOC NETWORKS, 2023, 140
  • [35] Linguistic features and psychological states: A machine-learning based approach
    Du, Xiaowei
    Sun, Yunmei
    FRONTIERS IN PSYCHOLOGY, 2022, 13
  • [36] A Machine-Learning Approach to Time Discrimination
    Hansen, Peter
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 2132 - 2133
  • [37] Image-based crystal detection: a machine-learning approach
    Liu, Roy
    Freund, Yoav
    Spraggon, Glen
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2008, 64 : 1187 - 1195
  • [38] Machine-Learning Approach for Design of Nanomagnetic-Based Antennas
    Gianfagna, Carmine
    Yu, Huan
    Swaminathan, Madhavan
    Pulugurtha, Raj
    Tummala, Rao
    Antonini, Giulio
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (08) : 4963 - 4975
  • [39] A novel machine-learning based approach to predict flares of psoriasis
    Ramelyte, E.
    Djamei, V.
    Maul, T. J.
    Anzengruber, F.
    Navarini, A.
    EXPERIMENTAL DERMATOLOGY, 2018, 27 (03) : E44 - E45
  • [40] Theory Identity: A Machine-Learning Approach
    Larsen, Kai R.
    Hovorka, Dirk
    West, Jevin
    Birt, James
    Pfaff, James R.
    Chambers, Trevor W.
    Sampedro, Zebula R.
    Zager, Nick
    Vanstone, Bruce
    2014 47TH HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), 2014, : 4639 - 4648