Retrieval of soil salinity based on multi-source remote sensing data and differential transformation technology

被引:6
|
作者
Zhang, Fei [1 ,2 ]
Li, Xingyou [2 ]
Zhou, Xiaohong [2 ]
Chan, Ngai Weng [3 ]
Tan, Mou Leong [3 ]
Kung, Hsiang-Te [4 ]
Shi, Jingchao [4 ]
机构
[1] Zhejiang Normal Univ, Coll Geog & Environm Sci, Jinhua 321004, Peoples R China
[2] Xinjiang Univ, Coll Geog & Remote Sensing Sci, Urumqi, Peoples R China
[3] Univ Sains Malaysia, Sch Humanities, GeoInformat Unit, Geog Sect, George Town, Malaysia
[4] Univ Memphis, Dept Earth Sci, Memphis, TN USA
基金
中国国家自然科学基金;
关键词
Differential transformation; Topographic factors; CS-SVM; Soil salt content inversion; SALT-AFFECTED SOIL; REGION; INDEX; RIVER; SPECTROSCOPY; SALINIZATION; REFLECTANCE; XINJIANG; MODEL;
D O I
10.1080/01431161.2023.2179900
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Rapid and accurate assessments of soil salinity information surrounding saline lakes are crucial for agricultural development and ecological security in arid regions. The Support Vector Machine (SVM) algorithm is currently utilized to derive the relationship between environmental covariates and soil salinity to perform remote sensing inversion of regional soil salinity; however, there is still potential for improvement in the existing SVM algorithm. Therefore, this study aims to improve the remote sensing-based soil salinity content (SSC) extraction from the Landsat 8, DEM and HJ-1A CCD satellite data using the Cuckoo Search Algorithms-Support Vector Machines (CS-SVM) model. In addition, the correlation and principal component analysis were conducted to determine the principal components of environmental covariates. The results show that the differential transformation effectively separates the land and water, which helps to reduce the noise in the raw remote sensing image. The analysis of soil and vegetation factors shows that the first three principal components cumulative variance contributed 99.69% on the raw remote sensing image, while the first two principal components cumulative variance contributed 88.01% and 85.28% on the first- and second-order differential transformation remote sensing images, respectively. Interestingly, L-S2 is the only factor correlated with SSC in the third order differential transform remote sensing image, with the R value of 0.325. The slope direction and plane curvature under the topographic factors had negative correlations with SSC, with the R values of -0.521 and -0.325, respectively. Finally, the SSC inversion model was developed using the first order differential transformation remote sensing images, which has high accuracy and good stability (R-2 = 0.68 and RMSE = 3.80 g(-1)). The cuckoo algorithm is helpful for determining the best support vector machine parameters and offers new perspectives in improving the reliability of remote sensing-based soil salinity inversion in arid regions.
引用
收藏
页码:1348 / 1368
页数:21
相关论文
共 50 条
  • [31] Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China
    Huang, Xiaodong
    Deng, Jie
    Ma, Xiaofang
    Wang, Yunlong
    Feng, Qisheng
    Hao, Xiaohua
    Liang, Tiangang
    CRYOSPHERE, 2016, 10 (05): : 2453 - 2463
  • [32] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    LU Tianqi
    CHEN Shengbo
    TU Yuan
    YU Yan
    CAO Yijing
    JIANG Deyang
    Chinese Geographical Science, 2019, 29 (02) : 192 - 201
  • [33] Biomass Estimation and Saturation Value Determination Based on Multi-Source Remote Sensing Data
    Sa, Rula
    Nie, Yonghui
    Chumachenko, Sergey
    Fan, Wenyi
    REMOTE SENSING, 2024, 16 (12)
  • [34] A GRID-BASED PLATFORM FOR DISTRIBUTED MULTI-SOURCE REMOTE SENSING DATA SHARING
    Li Fan
    Zhang Xu
    Deng Guang
    Yong Shan
    Wang Hong-rong
    DCABES 2009: THE 8TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, PROCEEDINGS, 2009, : 270 - 274
  • [35] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    Tianqi Lu
    Shengbo Chen
    Yuan Tu
    Yan Yu
    Yijing Cao
    Deyang Jiang
    Chinese Geographical Science, 2019, 29 : 192 - 201
  • [36] Analysis of flood inundation in ungauged basins based on multi-source remote sensing data
    Gao, Wei
    Shen, Qiu
    Zhou, Yuehua
    Li, Xin
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (03)
  • [37] Analysis of flood inundation in ungauged basins based on multi-source remote sensing data
    Wei Gao
    Qiu Shen
    Yuehua Zhou
    Xin Li
    Environmental Monitoring and Assessment, 2018, 190
  • [38] Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data
    Lu Tianqi
    Chen Shengbo
    Tu Yuan
    Yu Yan
    Cao Yijing
    Jiang Deyang
    CHINESE GEOGRAPHICAL SCIENCE, 2019, 29 (02) : 192 - 201
  • [39] Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data
    Shi, Wei
    Chen, Guan
    Meng, Xingmin
    Bian, Shiqiang
    Jin, Jiacheng
    Wu, Jie
    Huang, Fengchun
    Chong, Yan
    REMOTE SENSING, 2023, 15 (19)
  • [40] EFFECTIVE CLASSIFICATION OF LOCAL CLIMATE ZONES BASED ON MULTI-SOURCE REMOTE SENSING DATA
    Jing, Hao
    Feng, Yingchao
    Zhang, Wenkai
    Zhang, Yue
    Wang, Siyue
    Fu, Kun
    Chen, Kaiqiang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2666 - 2669