Leveraging explainable AI for gut microbiome-based colorectal cancer classification

被引:18
|
作者
Rynazal, Ryza [1 ]
Fujisawa, Kota [1 ]
Shiroma, Hirotsugu [1 ]
Salim, Felix [1 ]
Mizutani, Sayaka [1 ]
Shiba, Satoshi [5 ]
Yachida, Shinichi [5 ,6 ]
Yamada, Takuji [1 ,2 ,3 ,4 ]
机构
[1] Tokyo Inst Technol, Sch Life Sci & Technol, Tokyo, Japan
[2] Metagen Inc, Yamagata, Japan
[3] Metagen Theurapeut Inc, Yamagata, Japan
[4] Digzyme Inc, Tokyo, Japan
[5] Natl Canc Ctr, Div Genom Med, Tokyo, Japan
[6] Osaka Univ, Grad Sch Med, Dept Canc Genome Informat, Osaka, Japan
基金
日本学术振兴会;
关键词
D O I
10.1186/s13059-023-02858-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Studies have shown a link between colorectal cancer (CRC) and gut microbiome compositions. In these studies, machine learning is used to infer CRC biomarkers using global explanation methods. While these methods allow the identification of bacteria generally correlated with CRC, they fail to recognize species that are only influential for some individuals. In this study, we investigate the potential of Shapley Additive Explanations (SHAP) for a more personalized CRC biomarker identification. Analyses of five independent datasets show that this method can even separate CRC subjects into subgroups with distinct CRC probabilities and bacterial biomarkers.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Gut microbiome-based medical methodologies for early-stage disease prevention
    Wang, Jing-Zhang
    Du, Wen-Tao
    Xu, Yan-Li
    Cheng, Shu-Zhen
    Liu, Zhi-Jun
    MICROBIAL PATHOGENESIS, 2017, 105 : 122 - 130
  • [42] Microbiome-Based Colon Cancer Patient Stratification and Survival Analysis
    Smyth, Joshua
    Godet, Julien
    Choudhary, Anisa
    Das, Anubrata
    Gkoutos, Georgios V.
    Acharjee, Animesh
    CANCER MEDICINE, 2024, 13 (22):
  • [43] Stacking and Chaining of Normalization Methods in Deep Learning-Based Classification of Colorectal Cancer Using Gut Microbiome Data
    Mulenga, Mwenge
    Kareem, Sameem Abdul
    Sabri, Aznul Qalid Md
    Seera, Manjeevan
    Mulenga, Mwenge (mwenge2008@yahoo.co.uk), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 97296 - 97319
  • [44] Stacking and Chaining of Normalization Methods in Deep Learning-Based Classification of Colorectal Cancer Using Gut Microbiome Data
    Mulenga, Mwenge
    Kareem, Sameem Abdul
    Sabri, Aznul Qalid Md
    Seera, Manjeevan
    IEEE ACCESS, 2021, 9 : 97296 - 97319
  • [45] Gut Microbiome-Based Management of Patients With Heart Failure JACC Review Topic of the Week
    Mamic, Petra
    Snyder, Michael
    Tang, W. H. Wilson
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (17) : 1729 - 1739
  • [46] Gut microbiome-based supervised machine learning for clinical diagnosis of inflammatory bowel diseases
    Manandhar, Ishan
    Alimadadi, Ahmad
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2021, 320 (03): : G328 - G337
  • [47] THE DIFFERENCE OF GUT MICROBIOME IN THE STAGE OF COLORECTAL CANCER AND CHANGE OF GUT MICROBIOME AFTER SURGERY OR CHEMOTHERAPY
    Lee, Dong Ho
    Lee, Yura
    Park, Young Soo
    Kim, You-me
    Kim, Yoon-keun
    Seol, Mijin
    Yoon, Hyuk
    Shin, Cheol Min
    Lee, Won-Hee
    Kim, Nayoung
    Cho, Jae Ho
    GASTROENTEROLOGY, 2019, 156 (06) : S682 - S682
  • [48] Explainable AI-driven model for gastrointestinal cancer classification
    Binzagr, Faisal
    FRONTIERS IN MEDICINE, 2024, 11
  • [49] The difference of gut microbiome in the stage of colorectal cancer and change of gut microbiome after surgery or chemotherapy
    Cho, J.
    Lee, D.
    Lee, Y.
    Seol, M.
    Kim, Y.
    Lee, W.
    Kim, Y.
    Park, Y.
    Shin, C.
    Yoon, H.
    Kim, N.
    Seol, S.
    HELICOBACTER, 2019, 24
  • [50] Microbiome-based body site of origin classification of forensically relevant blood traces
    Lopez, Celia Diez
    Gonzalez, Diego Montiel
    Haas, Cordula
    Vidaki, Athina
    Kayser, Manfred
    FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2020, 47