General (k, p)-Riemann-Liouville fractional integrals

被引:4
|
作者
Benaissa, Bouharket [1 ]
Budak, Huseyin [2 ]
机构
[1] Univ Tiaret, Fac Mat Sci, Lab Informat & Math, Tiaret, Algeria
[2] Duzce Univ, Dept Math, Fac Sci & Arts, TR-81620 Duzce, Turkiye
关键词
General; (k; p)-Riemann-Liouville; p)-gamma function; fractional integrals;
D O I
10.2298/FIL2408579B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main motivation of this study is to establish a general version of the Riemann-Liouville fractional integrals with two exponential parameters k and p which is determined over the (k, p)-gamma function. In particular, we present the harmonic, geometric and arithmetic (k, p)- Riemann-Liouville fractional integrals. When p = k, these integrals reduce to k-Riemann-Liouville fractional integrals. Some formulas relating to general (k, p)-Riemann-Liouville fraction integrals are also given.
引用
收藏
页码:2579 / 2586
页数:8
相关论文
共 50 条
  • [31] NEW GENERALISATIONS OF GRUSS INEQUALITY USING RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Dahmani, Zoubir
    Tabharit, Louiza
    Taf, Sabrina
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 2 (03): : 93 - 99
  • [32] Solution of Singular Integral Equations via Riemann-Liouville Fractional Integrals
    Alqudah, Manar A.
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [33] Riesz potential and riemann-liouville fractional integrals and derivatives of jacobi polynomials
    Department of Control Engineering, B.E.R.G. Faculty, Kosice University of Technology, B. Nemcovej 3, 04200 Kosice, Slovakia
    Appl Math Lett, 1 (103-108):
  • [34] Some results on integral inequalities via Riemann-Liouville fractional integrals
    Li, Xiaoling
    Qaisar, Shahid
    Nasir, Jamshed
    Butt, Saad Ihsan
    Ahmad, Farooq
    Bari, Mehwish
    Farooq, Shan E.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [35] The general solution of impulsive systems with Riemann-Liouville fractional derivatives
    Zhang, Xianmin
    Ding, Wenbin
    Peng, Hui
    Liu, Zuohua
    Shu, Tong
    OPEN MATHEMATICS, 2016, 14 : 1125 - 1137
  • [36] Ostrowski type inequalities for k-β-convex functions via Riemann-Liouville k-fractional integrals
    Lakhal, Fahim
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1561 - 1578
  • [37] ON RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR OF A GENERAL CLASS OF FUNCTIONS
    Kumar, Virendra
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (3-4): : 193 - 199
  • [38] Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions
    Passary, Donny
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AIMS MATHEMATICS, 2024, 9 (01): : 218 - 239
  • [39] On a General Formulation of the Riemann-Liouville Fractional Operator and Related Inequalities
    Delgado, Juan Gabriel Galeano
    Valdes, Juan Eduardo Napoles
    Reyes, Edgardo Enrique Perez
    MATHEMATICS, 2023, 11 (16)
  • [40] Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals
    Butt, Saad Ihsan
    Kashuri, Artion
    Umar, Muhammad
    Aslam, Adnan
    Gao, Wei
    AIMS MATHEMATICS, 2020, 5 (05): : 5193 - 5220