In-situ and adhesive repair of continuous fiber composites using 3D printing

被引:10
|
作者
Rashvand, Kaveh [1 ]
Eder, Martin Alexander [1 ]
Sarhadi, Ali [1 ]
机构
[1] Tech Univ Denmark, Dept Wind & Energy Syst, Frederiksborgvej 399,Ris Campus, DK-4000 Roskilde, Denmark
关键词
Continuous fiber composite; 3D printing; Repair; Mechanical testing; Print in-situ;
D O I
10.1016/j.addma.2024.103975
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The development of automated repair processes for continuous carbon fiber reinforced thermoplastic (CFRTP) composites is still in its early stages. However, the emergence of 3D printing technology presents a significant opportunity for the automated repair process to evolve alongside CFRTP composites. This study aims to evaluate the 3D printing repair of continuous fiber composites (CFCs) and characterize the mechanical performance of the repaired specimens. Two methods are proposed for repairing CFRTP utilizing additive manufacturing (AM): repair by a separately 3D-printed and subsequently adhesively bonded patch and repair with 3D printing in-situ at a recess damage. To compare the performance of the proposed methods, 16 test specimens were 3D printed, consisting of 4 intact and 12 damaged samples. Among the damaged samples, 4 were used as damaged specimens, 4 were repaired with adhesively bonded patches, and the remainder were repaired by in-situ printing. Mechanical tests were conducted on all four types of specimens, and the results indicate that the 3D-printed insitu repair of carbon-reinforced polycarbonate has both the highest strength and elastic modulus. The results show that the repair using adhesive patches and repair in-situ improves the elastic modulus of the damaged specimens by 30% and 44%, respectively. Similarly, the tensile strength of the specimens repaired by adhesive patches and in-situ printing is 20% and 28%, respectively, higher than that of the damaged samples. An analytical model was developed to predict the elastic modulus of damaged and intact specimens, and the analytically predicted stiffnesses showed good agreement with the experimental measurements. Overall, this study demonstrates the potential of 3D printing technology for repairing CFRTP composites and highlights the advantages of in-situ printing over adhesive patch repair.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] 3D printing of discontinuous and continuous fibre composites using stereolithography
    Sano, Yukako
    Matsuzaki, Ryosuke
    Ueda, Masahito
    Todoroki, Akira
    Hirano, Yoshiyasu
    ADDITIVE MANUFACTURING, 2018, 24 : 521 - 527
  • [22] 3D microwave printing temperature control of continuous carbon fiber reinforced composites
    Li, Nanya
    Link, Guido
    Jelonnek, John
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 187
  • [23] An investigation into printing pressure of 3D printed continuous carbon fiber reinforced composites
    Zhang, Zhongsen
    Long, Yu
    Yang, Zhe
    Fu, Kunkun
    Li, Yan
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2022, 162
  • [24] Analysis of thermal behavior in 3D printing of continuous fiber reinforced polymer composites
    Li, Shixian
    Correia, J. P. M.
    Wang, Kui
    Ahzi, Said
    MATERIAL FORMING, ESAFORM 2024, 2024, 41 : 2573 - 2583
  • [25] Embedded 3D printing of UV-curable thermosetting composites with continuous fiber
    Ding, Yuchen
    Gracego, Alston X.
    Wang, Yuanrui
    Dong, Guoying
    Dunn, Martin L.
    Yu, Kai
    MATERIALS HORIZONS, 2024, 11 (18) : 4378 - 4392
  • [26] In-situ 3D fracture propagation of short carbon fiber reinforced polymer composites
    Wang, Kaifeng
    Pei, Shenli
    Li, Yang
    Li, Jingjing
    Zeng, Danielle
    Su, Xuming
    Xiao, Xianghui
    Chen, Nannan
    COMPOSITES SCIENCE AND TECHNOLOGY, 2019, 182
  • [27] Warping estimation of continuous fiber-reinforced composites made by robotic 3D printing
    Ghnatios, Chady
    Fayazbakhsh, Kazem
    ADDITIVE MANUFACTURING, 2022, 55
  • [28] 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties
    Dong, Ke
    Liu, Liangqiang
    Huang, Xiayan
    Xiao, Xueliang
    COMPOSITE STRUCTURES, 2020, 250
  • [29] Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites
    Yang, Yuan
    Yang, Bo
    Chang, Zhengping
    Duan, Jihao
    Chen, Weihua
    POLYMERS, 2023, 15 (17)
  • [30] Research on Heating Zone Length of Continuous Fiber Reinforced Composites 3D Printing Nozzle
    Wang, Yesong
    Wang, Qing
    Kong, Dekun
    Liu, Jiang
    CHEMISTRYSELECT, 2021, 6 (41): : 11293 - 11298