A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation

被引:9
|
作者
Wen, Shenglin [1 ,2 ]
Cui, Ningbo [1 ,2 ]
Gong, Daozhi [3 ]
Liu, Chunwei [4 ]
Xing, Liwen [1 ,2 ]
Wu, Zongjun [1 ,2 ]
Wang, Zhihui [1 ,2 ]
Wang, Jiaxin [5 ]
机构
[1] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Water Resource & Hydropower, Chengdu 610065, Peoples R China
[3] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Jiangsu Key Lab Agr Meteorol, Nanjing 210044, Peoples R China
[5] McGill Univ, Dept Bioresource Engn, Sainte Anne De Bellevue, PQ, Canada
基金
中国国家自然科学基金;
关键词
Deficit irrigation; Yield; Water productivity; Woody fruits; Herbaceous fruits; Vine fruits; USE EFFICIENCY; LOESS PLATEAU; CITRUS TREES; APPLE-TREES; QUALITY; NITROGEN; GROWTH; JUJUBE; MANAGEMENT; CHINA;
D O I
10.1016/j.agwat.2023.108412
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Deficit irrigation (DI) is widely recognized as an irrigation method to save water and increase/maintain yield. The objective of this study was to evaluate the effects of DI on yield and water productivity (WP, the ratio of yield divided by evapotranspiration (ET)) of woody fruits (apple, citrus, pear, peach), herbaceous fruits (strawberry, watermelon) and vine fruit (grape), and to identify the optimal irrigation management strategy for different fruit species groups. For this, we conducted a comprehensive meta-analysis with 591 observations from 56 peerreviewed papers. Results showed that DI reduced the yield of woody, herbaceous, and vine fruits by 13.74%, 20.51%, and 9.03%, and increased WP by 13.34%, - 2.08%, and 9.89% compared with full irrigation (FI), respectively. Herbaceous fruits were more vulnerable to yield reduction than woody and vine fruits under DI. As for woody fruits, compared with FI, low degree (80%-100% irrigation amount of FI) DI performed better, increasing yield and WP by 0.87% and 9.77%. Woody fruits are suitable for DI in stage I and stage II (bud burst to leafing stage and flowering to fruit set stage), which can reduce the risk of yield reduction and significantly increase WP by 1.86%- 9.28%. Among irrigation methods, surge-root irrigation and sprinkler irrigation under DI performed better for woody fruits, increasing yield and WP by 1.81% and 11.89%, - 5.85% and 43.91%, respectively. In terms of herbaceous fruits, compared with FI, mild degree (60%-80% FI) DI declined the risk of yield reduction and significantly increased WP by 2.25%. DI at stage IV (fruit maturation stage) performed better, which can decrease the risk of herbaceous fruit yield reduction and improve WP by 0.37%. Among irrigation methods, furrow irrigation under DI performed better for herbaceous fruits, increasing yield and WP by - 0.66% and 2.29%. In terms of vine fruits, compared with FI, moderate degree (40%-60% FI) DI performed better, which can significantly increase yield and WP by - 8.05% and 13.87%. Vine fruits are suitable for DI in stage I, increasing yield and WP by 5.38% and 22.13%. For woody fruits, DI is suitable for higher seasonal precipitation (SP > 400 mm) and annual average temperature (AAT & GE; 10 & DEG;C). In contrast, for vine fruits and herbaceous fruits, DI is suitable for lower SP (< 200 mm) and AAT (< 10 & DEG;C). Our findings provide guidance for precise water deficit management of woody, herbaceous, and vine fruits.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Growth, Yield and Water Productivity of Tomato as Influenced by Deficit Irrigation Water Management
    Sangeeta Mukherjee
    Prosanta Kumar Dash
    Debesh Das
    Shimul Das
    Environmental Processes, 2023, 10
  • [32] Growth, Yield and Water Productivity of Tomato as Influenced by Deficit Irrigation Water Management
    Mukherjee, Sangeeta
    Dash, Prosanta Kumar
    Das, Debesh
    Das, Shimul
    ENVIRONMENTAL PROCESSES-AN INTERNATIONAL JOURNAL, 2023, 10 (01):
  • [33] Effects of deficit irrigation on potato yield and water productivity in northern Ethiopia
    Teshome, Aemro Wale
    Wosenie, Mekete Dessie
    Addis, Hailu Kendie
    PLOS WATER, 2024, 3 (09):
  • [34] Impacts of Deficit Irrigation on Strawberry Physiology, Water Productivity, Quality, and Yield
    Yang, Pingguo
    Drohan, Patrick J.
    Zhang, Xiaojiao
    Long, Huaiyu
    Soulis, Konstantinos X.
    Shi, Xiaorong
    SUSTAINABILITY, 2025, 17 (02)
  • [35] Effects of deficit irrigation on yield, water productivity, and economic returns of wheat
    Ali, M. H.
    Hoque, M. R.
    Hassan, A. A.
    Khair, A.
    AGRICULTURAL WATER MANAGEMENT, 2007, 92 (03) : 151 - 161
  • [36] Effects of super absorbent polymer on crop yield, water productivity and soil properties: A global meta-analysis
    Zheng, Huifang
    Mei, Peipei
    Wang, Wending
    Yin, Yulong
    Li, Haojie
    Zheng, Mengyao
    Ou, Xingqi
    Cui, Zhenling
    AGRICULTURAL WATER MANAGEMENT, 2023, 282
  • [37] Yield response, water productivity, and seasonal water production functions for maize under deficit irrigation water management in southern Taiwan
    Greaves, Geneille E.
    Wang, Yu-Min
    PLANT PRODUCTION SCIENCE, 2017, 20 (04) : 353 - 365
  • [38] Effect of practicing water-saving irrigation on greenhouse gas emissions and crop productivity: A global meta-analysis
    Tan, Mingdong
    Cui, Ningbo
    Jiang, Shouzheng
    Xing, Liwen
    Wen, Shenglin
    Liu, Quanshan
    Li, Weikang
    Yan, Siwei
    Wang, Yaosheng
    Jin, Haochen
    Wang, Zhihui
    AGRICULTURAL WATER MANAGEMENT, 2025, 308
  • [39] Effect of Deficit Irrigation On Yield, Water Productivity, Energy Indices and Economic Productivity in Eggplant Cultivation
    Canturk, Aslihan
    Cemek, Bilal
    Tasan, Mehmet
    Tasan, Sevda
    GESUNDE PFLANZEN, 2023, 75 (05): : 1579 - 1589
  • [40] Effect of Deficit Irrigation On Yield, Water Productivity, Energy Indices and Economic Productivity in Eggplant Cultivation
    Aslıhan Cantürk
    Bilal Cemek
    Mehmet Taşan
    Sevda Taşan
    Gesunde Pflanzen, 2023, 75 : 1579 - 1589