Thermal Behavior of Mesoporous Aramid Fiber Reinforced Silica Aerogel Composite for Thermal Insulation Applications: Microscale Modeling

被引:6
|
作者
Nasri, Wiem [1 ]
Djebali, Ridha [2 ]
Chamkha, Ali Jawad [3 ]
Bezazi, Abderazak [4 ]
Mechighel, Farid [5 ,6 ]
Reis, Paulo [7 ]
Driss, Zied [1 ]
机构
[1] Univ Sfax US, Natl Sch Engineers Sfax ENIS, Lab Electro Mech Syst LASEM, BP 1173,Rd Soukra Km 3-5, Sfax 3038, Tunisia
[2] Univ Jendouba, ISLAI Beja, UR Modeling Optimizat & Augmented Engn, Beja 9000, Tunisia
[3] Kuwait Coll Sci & Technol, Doha, Kuwait
[4] Univ May 08 1945, Lab Appl Mech New Mat LMANM, BP 401, Guelma 24000, Algeria
[5] Annaba Univ, Fac Engn Sci, Dept Mech Engn, LR3MI Lab, BP 12, Annaba 23000, Algeria
[6] Univ Limoges, SPCTS Lab, Limoges, France
[7] Univ Coimbra, Dept Mech Engn, CEMMPRE, Coimbra, Portugal
来源
关键词
Aramid fiber reinforced silica aerogel composite; micromechanical modeling; thermal conductivity; porous materials; thermal insulation; RSM; BOUNDARY-CONDITIONS; CONDUCTIVITY;
D O I
10.22055/jacm.2023.44601.4247
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper explores the incorporation of aramid fibers, recognized for their high mechanical flexibility and low thermal conductivity (TC), to serve as reinforcing agents within the highly porous aerogel matrix in order to overcome their fragility and weak mechanical structure that impose limitations on their practical utility especially in piping insulation. The thermal properties are determined using a micromechanical modeling approach that considers parameters such as temperature, fiber volume fraction, thermal conductivity, and porosity of the silica aerogel. For specific conditions, including an Aramid fiber radius of 6 microns, a silica aerogel thermal conductivity of 0.017 W.m-1.K-1, and a porosity of 95%, the resulting AFRA composite exhibits an Effective Thermal Conductivity (ETC) of 0.0234 W.m-1.K-1. Notably, this value is lower than the thermal conductivity of air at ambient temperature. The findings are further validated through experimental and analytical techniques. A response surface methodology (RSM) based on Box-Behnken design (BBD) is employed. This approach leads to the development of a quadratic equation intricately relating the key parameters to the ETC of the AFRA. The aim is optimization, identifying target optimal values for these parameters to further enhance the performance of AFRA composites.
引用
收藏
页码:140 / 151
页数:12
相关论文
共 50 条
  • [31] Modulation of Thermal Insulation and Mechanical Property of Silica Aerogel Thermal Insulation Coatings
    Di, Zhigang
    Ma, Shengjun
    Wang, Huanhuan
    Guan, Zichao
    Lian, Bingjie
    Qiu, Yunpeng
    Jiang, Yiming
    COATINGS, 2022, 12 (10)
  • [32] Aramid reinforced polyimide aerogel composites with high-mechanical strength for thermal insulation material
    Liu, Tuo
    Liang, Fuwei
    Chen, Shun
    Zhang, Ping
    Qian, Kun
    Xu, Yang
    Guo, Wenwen
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2023, 34 (05) : 1769 - 1776
  • [33] Thermal conductivity of fiber and opacifier loaded silica aerogel composite
    Zhang, Hu
    Fang, Wen-Zhen
    Wang, Xian
    Li, Yue-Ming
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 21 - 31
  • [34] Design of hollow glass fiber/silica aerogel composites for high-temperature thermal insulation applications
    Liu, He
    Xu, Guangsen
    Li, Heyong
    Yuan, Pei
    Wang, Yanling
    Liu, Yong
    Wu, Xuehong
    Li, Zengyao
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 48
  • [35] SILICA COMPOSITE THERMAL INSULATION
    BEASLEY, RM
    IZU, YB
    AMERICAN CERAMIC SOCIETY BULLETIN, 1972, 51 (04): : 426 - &
  • [36] Multiscale mullite fiber/whisker reinforced silica aerogel nanocomposites with enhanced compressive strength and thermal insulation performance
    Zhang, Xiang
    Zhang, Tao
    Yi, Zhehan
    Yan, Liwen
    Liu, Shan
    Yao, Xinghe
    Guo, Anran
    Liu, Jiachen
    Hou, Feng
    CERAMICS INTERNATIONAL, 2020, 46 (18) : 28561 - 28568
  • [37] Lightweight Composite Aramid Nanofiber Aerogel With Multistage Pores and Layered Structure for Acoustic and Thermal Insulation
    Yan, Ran
    Qin, Wenfeng
    Gong, Guochong
    Chen, Wang
    Peng, Hao
    Zhou, Bin
    Journal of Applied Polymer Science, 1600, John Wiley and Sons Inc
  • [38] Lightweight Composite Aramid Nanofiber Aerogel With Multistage Pores and Layered Structure for Acoustic and Thermal Insulation
    Yan, Ran
    Qin, Wenfeng
    Gong, Guochong
    Chen, Wang
    Peng, Hao
    Zhou, Bin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2025,
  • [39] Silica Aerogel-Rubber Composite: A Sustainable Alternative for Buildings' Thermal Insulation
    Alves, Patricia
    Dias, Diogo Azeiteiro
    Rodrigues Pontinha, Ana Dora
    MOLECULES, 2022, 27 (20):
  • [40] A New Method for Measuring the Thermal Insulation Properties of Fibrous Silica Aerogel Composite
    Mazraeh-shahi, Z. Talebi
    Shoushtari, A. Mousavi
    Bahramian, A. R.
    5TH INTERNATIONAL BIENNIAL CONFERENCE ON ULTRAFINE GRAINED AND NANOSTRUCTURED MATERIALS, UFGNSM15, 2015, 11 : 583 - 587