Semantic Data Augmentation for Deep Learning Testing using Generative AI

被引:1
|
作者
Missaoui, Sondess [1 ]
Gerasimou, Simos [1 ]
Matragkas, Nicholas [2 ]
机构
[1] Univ York, Dept Comp Sci, York, N Yorkshire, England
[2] Univ Paris Saclay, CEA, List, Paris, France
关键词
Generative AI; Deep Learning Testing; Coverage Guided Fuzzing; Data Augmentation; Safe AI;
D O I
10.1109/ASE56229.2023.00194
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of state-of-the-art Deep Learning models heavily depends on the availability of well-curated training and testing datasets that sufficiently capture the operational domain. Data augmentation is an effective technique in alleviating data scarcity, reducing the time-consuming and expensive data collection and labelling processes. Despite their potential, existing data augmentation techniques primarily focus on simple geometric and colour space transformations, like noise, flipping and resizing, producing datasets with limited diversity. When the augmented dataset is used for testing the Deep Learning models, the derived results are typically uninformative about the robustness of the models. We address this gap by introducing GENFUZZER, a novel coverage-guided data augmentation fuzzing technique for Deep Learning models underpinned by generative AI. We demonstrate our approach using widely-adopted datasets and models employed for image classification, illustrating its effectiveness in generating informative datasets leading up to a 26% increase in widely-used coverage criteria.
引用
收藏
页码:1694 / 1698
页数:5
相关论文
共 50 条
  • [21] Conditioned Generative Model via Latent Semantic Controlling for Learning Deep Representation of Data
    Kim, Jin-Young
    Cho, Sung-Bae
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I, 2019, 11871 : 319 - 327
  • [22] Data augmentation and generative machine learning on the cloud platform
    Piyush Vyas
    Kaushik Muthusamy Ragothaman
    Akhilesh Chauhan
    Bhaskar Rimal
    International Journal of Information Technology, 2024, 16 (8) : 4833 - 4843
  • [23] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Felipe André Zeiser
    Cristiano André da Costa
    Tiago Zonta
    Nuno M. C. Marques
    Adriana Vial Roehe
    Marcelo Moreno
    Rodrigo da Rosa Righi
    Journal of Digital Imaging, 2020, 33 : 858 - 868
  • [24] Brain tumors classification with deep learning using data augmentation
    Gurkahraman, Kali
    Karakis, Rukiye
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (02): : 997 - 1011
  • [25] Wireless Positioning Using Deep Learning with Data Augmentation Technique
    Tian, Kegang
    Song, Shijie
    Xu, Wenbo
    Li, Dong
    Yang, Kun
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [26] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [27] Forecasting emerging technologies using data augmentation and deep learning
    Zhou, Yuan
    Dong, Fang
    Liu, Yufei
    Li, Zhaofu
    Du, JunFei
    Zhang, Li
    SCIENTOMETRICS, 2020, 123 (01) : 1 - 29
  • [28] Forecasting emerging technologies using data augmentation and deep learning
    Yuan Zhou
    Fang Dong
    Yufei Liu
    Zhaofu Li
    JunFei Du
    Li Zhang
    Scientometrics, 2020, 123 : 1 - 29
  • [29] Galaxy detection and identification using deep learning and data augmentation
    Gonzalez, R. E.
    Munoz, R. P.
    Hernandez, C. A.
    ASTRONOMY AND COMPUTING, 2018, 25 : 103 - 109
  • [30] UAV Payload Detection Using Deep Learning and Data Augmentation
    Ku, Ilmun
    Roh, Seungyeon
    Kim, Gyeongyeong
    Taylor, Charles
    Wang, Yaqin
    Matson, Eric T.
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 18 - 25