The convergence of Galerkin-Petrov methods for Dirichlet projections

被引:1
|
作者
He, Li [1 ]
Li, Yifang [1 ]
Zhang, Yiyuan [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Galerkin-Petrov methods; Toeplitz operators; Dirichlet type spaces; Polynomial collocation; Analytic element collocation; TOEPLITZ-OPERATORS; SPACES;
D O I
10.1007/s43034-023-00284-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the convergence of several Galerkin-Petrov methods, including the finite section method, the polynomial collocation method and the analytic element collocation method for Toeplitz operators on Dirichlet type spaces. In particular, we show that such methods converge if the basis functions and test functions own certain circular symmetry.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Galerkin-Petrov least squares mixed element method for stationary incompressible magnetohydrodynamics
    罗振东
    毛允魁
    朱江
    AppliedMathematicsandMechanics(EnglishEdition), 2007, (03) : 395 - 404
  • [22] SUFFICIENT CONDITIONS OF GALERKIN - PETROV METHOD CONVERGENCE
    LUCHKA, AY
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR, 1971, (07): : 594 - &
  • [23] Banach space projections and Petrov-Galerkin estimates
    Stern, Ari
    NUMERISCHE MATHEMATIK, 2015, 130 (01) : 125 - 133
  • [24] Computational analysis of the Covid-19 model using the continuous Galerkin-Petrov scheme
    Naz, Rahila
    Jan, Aasim Ullah
    Attaullah, Salah
    Boulaaras, Salah
    Guefaifia, Rafik
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2024, 13 (01):
  • [25] Nonlinear discontinuous Petrov–Galerkin methods
    C. Carstensen
    P. Bringmann
    F. Hellwig
    P. Wriggers
    Numerische Mathematik, 2018, 139 : 529 - 561
  • [26] Discrete Wavelet Petrov–Galerkin Methods
    Zhongying Chen
    Charles A. Micchelli
    Yuesheng Xu
    Advances in Computational Mathematics, 2002, 16 : 1 - 28
  • [27] On multiscale methods in Petrov–Galerkin formulation
    Daniel Elfverson
    Victor Ginting
    Patrick Henning
    Numerische Mathematik, 2015, 131 : 643 - 682
  • [28] INVESTIGATION OF RELIABILITY OF GALERKIN-PETROV METHOD WITH A SPECIAL STUDY OF HELIUM ATOM GROUND-STATE
    JANKOWSKI, K
    RUTKOWSKI, A
    THEORETICA CHIMICA ACTA, 1976, 43 (02): : 145 - 159
  • [29] Galerkin-Petrov method for strongly nonlinear singularly perturbed boundary value problems on special meshes
    Blatov, IA
    Blatova, VV
    Rozhec, YB
    Strygin, VV
    APPLIED NUMERICAL MATHEMATICS, 1997, 25 (04) : 321 - 332
  • [30] Discontinuous Galerkin and Petrov Galerkin methods for compressible viscous flows
    Wang, Li
    Anderson, W. Kyle
    Erwin, J. Taylor
    Kapadia, Sagar
    COMPUTERS & FLUIDS, 2014, 100 : 13 - 29